Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Guardian of the genome': Protein helps prevent damaged DNA in yeast

02.08.2010
Like a scout that runs ahead to spot signs of damage or danger, a protein in yeast safeguards the yeast cells' genome during replication -- a process vulnerable to errors when DNA is copied -- according to new Cornell research.

Researchers from Cornell University's Weill Institute for Cell and Molecular Biology have discovered how a protein called Mec1 plays the role of "guardian of the genome," explained Marcus Smolka, assistant professor of molecular biology and genetics. The findings "DNA Damage Signaling Recruits the Rtt107-Slx4 Scaffolds via Dpb11 to Mediate Replication Stress Response," are detailed in the journal Molecular Cell (July 30, 2010).

Previous studies have shown that cells lacking Mec1 accumulate damaged DNA and become more sensitive to agents that interfere with replication. The researchers report that the Mec1 protein monitors and repairs the machinery responsible for replicating the DNA. At times, when DNA becomes damaged, the replication machinery can actually detach from the DNA -- like a train coming off a track -- but Mec1 coordinates the repair of the machinery and the DNA itself, allowing it to restart and continue replicating.

"Mec1 organizes the cell's response against things that jeopardize the integrity of the genome," Smolka said.

... more about:
»DNA »Guardian »Mec1 »Molecular Target »Protein »Smolka »cell death

During the replication process, Mec1 accumulates at trouble spots such as lesions in the DNA or other blocks to replication. Mec1 is known as a kinase, a type of enzyme that modifies other proteins by adding a phosphate group to them (a process called phosphorylation), which then leads to a functional change in the protein. The researchers report that Mec1 adds a phosphate group to a protein known as Slx4, which then triggers Slx4 to anchor to the replication machinery. Slx4 then can employ a variety of tools to repair DNA and the replication machinery.

The findings are important because researchers have discovered counterparts (called orthologues) to Mec1, other related proteins with similar biological pathways in humans. Also, mutations to the human genes that produce Mec1 and related proteins can lead to cancer predisposition and neurological disorders. At the same time, cancer cells employ their own similar replication repair system, so understanding the process may help researchers design interventions that interrupt replication of cancer DNA.

Recently, other researchers discovered that the human version of Mec1, called ATR, phosphorylates a protein that is the human counterpart to Slx4. The next step, Smolka said, will be to see if after phosphorylation the human Slx4 also anchors to the replication machinery to repair any damaged machinery or DNA.

Co-authors include Patrice Ohouo, a graduate student in biochemistry, molecular and cell biology; Francisco M. Bastos de Oliveira, a postdoctoral researcher; and Beatriz Almeida, a research support specialist; all members of Smolka's lab.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

Further reports about: DNA Guardian Mec1 Molecular Target Protein Smolka cell death

More articles from Life Sciences:

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Protein droplets keep neurons at the ready and immune system in balance
16.08.2018 | Howard Hughes Medical Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>