Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Factory Worker' Signals in Cells Hold Possible Key to Anti-cancer Drugs

14.08.2009
Research from scientists at the UT Health Science Center at San Antonio and Yale University describes gatekeeper-factory worker interactions in cells to govern how obsolete proteins are recycled.

Like any appliance, proteins in living cells eventually become obsolete. The body relies on intricate machinery to tag proteins for recycling at a molecular factory, where they are chopped into pieces. Without recycling, the cell would overflow with molecular garbage and have scarce material to build new proteins.

In a paper posted online Wednesday, Aug. 12, by the journal Structure, researchers Maria Gaczynska, Ph.D., and Pawel Osmulski, Ph.D., of The University of Texas Health Science Center at San Antonio, and Mark Hochstrasser, Ph.D., of Yale University, describe how different parts of the factory communicate with each other to efficiently recycle cellular proteins.

The new findings hold potential ramifications for development of anti-cancer and anti-inflammation drugs, the researchers said.

Giant protein assembly

The machinery, called the UPS (ubiquitin-proteasome system), consists of several hundred proteins that direct obsolete proteins to the factory for recycling. The factory, a giant protein assembly called the proteasome, is equipped with gates, a warehouse and machines – catalytic centers that process the material.

“The gates are there to prevent wrong material – for example, proteins that should not yet be degraded – from entering the factory,” Dr. Gaczynska said. “The gates also help the factory to avoid a flood of raw materials that would choke and disrupt the factory operation. How to open the gates to allow the exact amount of the correct material inside the factory? This is where our work started.”

Gates observed in yeast

The scientists studied yeast proteasomes with an atomic-force microscope at the Health Science Center’s UT Institute of Biotechnology in the Texas Research Park. They discovered that the gates open briefly from time to time to admit materials for digestion. The opening is strictly correlated with the status of the machines, which are catalytic centers.

“It is sort of an invitation: My active centers are free; therefore, I can accept an order to perform a digest,” Dr. Osmulski said. “By signaling the gates how long to stay open, the factory works efficiently without waiting for supplies and without waste products littering the grounds.”

New way to regulate

The team also identified a small piece of machinery that is responsible for signaling the gates.

“We found that we can confuse the factory to keep the gate open by modifying that one piece of the active center,” Dr. Gaczynska said. “You can see immediately the opportunity to regulate the proteasome factory and the whole UPS activity in a totally new and unexplored way. If you also take into account that the gate talks back to the activity centers, the possibilities to control the whole factory are endless.”

Compounds that dampen proteasome activity have already been shown to suppress several cancers.

About the UT Health Science Center at San Antonio:

The University of Texas Health Science Center at San Antonio is the leading research institution in South Texas and one of the major health sciences universities in the world. With an operating budget of $668 million, the Health Science Center is the chief catalyst for the $16.3 billion biosciences and health care sector in San Antonio’s economy. The Health Science Center has had an estimated $36 billion impact on the region since inception and has expanded to six campuses in San Antonio, Laredo, Harlingen and Edinburg. More than 26,400 graduates (physicians, dentists, nurses, scientists and other health professionals) serve in their fields, including many in Texas. Health Science Center faculty are international leaders in cancer, cardiovascular disease, diabetes, aging, stroke prevention, kidney disease, orthopaedics, research imaging, transplant surgery, psychiatry and clinical neurosciences, pain management, genetics, nursing, dentistry and many other fields. For more information, visit www.uthscsa.edu.

Will Sansom | Newswise Science News
Further information:
http://www.uthscsa.edu

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>