Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Chemical architects' build materials with potential applications in drug delivery and gas storage

18.06.2013
Home remodelers understand the concept of improving original foundations with more modern elements.

Using this same approach—but with chemistry—researchers in the University of Pittsburgh's Kenneth P. Dietrich School of Arts and Sciences have designed a family of materials that could make drug delivery, gas storage, and gas transport more efficient and at a lower cost. The findings were reported in the latest issue of the Journal of the American Chemical Society (JACS).

The recent work builds upon Pitt Associate Professor of Chemistry Nathaniel Rosi's earlier research published last year in Nature Communications detailing a new class of metal-organic frameworks—crystalline compounds consisting of metal vertices and organic linkers that form porous structures. Last year, Rosi and his team created one of the most porous materials known at the time by changing the size of the vertex (the metal cluster) rather than the length of the organic linkers. Now, in JACS, he and his team have extended those linkers, demonstrating a family of materials even more porous—a property necessary for more efficient gas storage.

"We like to think of ourselves as chemical architects," said Rosi, principal investigator of the project. "Our approach always starts with thinking about structure and, in particular, how we can design and manipulate structure. Here, we demonstrate one of the most porous families of metal-organic frameworks known."

Rosi likens his work to that of a builder remodeling a child's chair. As the child grows taller, the legs of the chair become too short. Because the owner likes the structure and integrity of the chair, the owner decides to lengthen its legs instead of purchasing a new one. This is what Rosi and his team have done with their frameworks: they have used one material as a structural blueprint and replaced another element (the organic linkers) to prepare more porous materials.

In addition to their utility for gas storage, these porous materials could be critical for low-cost industrial separations—when one molecule is separated from another batch of molecules for purification purposes. The petrochemical industry has numerous high-value (and high-cost) separations used to isolate important chemicals involved with oil refining. Some of these separations could benefit from the use of porous materials as filters, said Rosi. Likewise, he notes that the pore size for his class of materials would be particularly useful for separating nanoparticles. Porosity also can affect the efficiency of pharmaceutical delivery into the human body.

An important metric for evaluating the porosity of a material is its pore volume. In Rosi's demonstration, three of these materials have pore volumes exceeding 4 cubic centimeters per gram (cc/g). For perspective, only one other metal-organic framework has a pore volume above this amount, with most others having volumes below 3 cc/g.

"Pore volume is a measure of how empty or vacant a material is—how much space in the material isn't filled," said Rosi. "When the pore openings are large, and the pore volume is large, it opens up the possibility of using the material as a scaffold to precisely organize and position biomolecules or nanoparticles in space."

Rosi and his team are currently investigating high-porous and low-density materials to be used as scaffolds for organizing large molecules and nanoparticles into functional materials.

Rosi's team members include Tao Li, a Pitt graduate student studying chemistry and the lead researcher on the project, along with Pitt undergraduate chemistry students Mark T. Kozlowski and Evan A. Doud, and Chatham University chemistry undergraduate student Maike N. Blakely.

The paper, "Stepwise Ligand Exchange for the Preparation of a Family of Mesoporous MOFs," was first published online May 20 in JACS. A portion of the work was performed with funding from the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of NETL. The authors also credit Pitt's Petersen Institute for Nanoscience and Engineering and the Swanson School of Engineering's Department of Mechanical Engineering and Materials Science for the use of their instruments.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>