Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The 'appetite-suppressing' effect of proteins explained

09.07.2012
Frequently recommended in weight-loss diets, dietary proteins have proven effectiveness thanks to their appetite-suppressing effects.

A team led by Gilles Mithieux, Director of Inserm's Unit 855 "Nutrition and the Brain" in Lyon, has managed to explain the biological mechanisms behind these properties. The researchers describe in detail the chain reactions triggered by digesting proteins, sending a 'satiety' message to the brain long after a meal. Their results, published on 5 July in the Cell review, will make it possible envisage improved care for obese or overweight patients.

The team of researchers from Inserm, CNRS and the Universit¨¦ Clause Bernard Lyon 1 has managed to shed light on the sensation of fullness experienced several hours after a protein-rich meal. This sensation is explained by messages exchanged between the digestive system and the brain, initiated by the dietary proteins that are mainly found in meat, fish, eggs or even some cereal-based products.

In previous studies, researchers proved that consuming dietary proteins triggers glucose synthesis in the intestine, after periods of food assimilation (a function known as gluconeogenesis). The glucose that is released in the blood circulation (portal vein) is detected by the nervous system, which sends an "appetite-suppressing" signal to the brain. Best-known in the liver and kidneys from which it supplies other organs with sugar, gluconeogenesis in the intestine sends an "appetite-suppressing" message after meals, characteristic of the sensation of "fullness".

In this new study, the researchers managed to accurately describe how digesting proteins triggers a double-loop of chain reactions involving the ventral (via the vagus nerve) and dorsal (via the spinal cord) peripheral nervous systems.

The in-depth study of biological mechanisms identified the specific receptors (¦Ì-opioid receptors ) found in the portal vein nervous system, at the outlet of the intestine. These receptors are inhibited by oligo-peptides, produced during protein digestion.

In an initial phase, the oglio-peptides act upon the ¦Ì-opioid receptors, which send a message through the vagus nerve and the spinal chord to areas of the brain specially-designed to receive these messages.

During a second phase, the brain sends a return-message that triggers gluconeogenesis via the intestine. The intestine then sends the "appetite-suppressing" message to areas of the brain that control food intake, such as the hypothalamus

1. Consumption of dietary proteins
2. Protein residues (oligo-peptides) travel to the intestine in the portal vein
3. Recognition of oligo-peptides by ¦Ì-opioid receptors
4. Receipt of peripheral signals
5. Gluconeogenesis induction
6. "Appetite-suppressing" message sent to brain
Identifying these receptors and their role in intestinal gluconeogenesis paves the way to explore new avenues for the treatment of obesity. The challenge is now to determine how to act on the ¦Ì-opioid receptors to control the fullness sensation over long periods. According to Gilles Mithieux, the leading author in the study: "If used too intensely, these receptors may become insensitive. A means of activating them 'moderately' must be found, thus retaining their long-term beneficial effects on controlling food intake".
Sources
¦Ì-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake
Celine Duraffourd1-3,5, Filipe De Vadder1-3,5, Daisy Goncalves1-3, Fabien Delaere1-3, ArmellePenhoat1-3, Bleuenn Brusset1-3, Fabienne Rajas1-3, Dominique Chassard1-4, Adeline Duchampt1-3, Anne Stefanutti1-3, Amandine Gautier-Stein1-3, Gilles Mithieux1-3
1. Institut National de la Sant¨¦ et de la Recherche M¨¦dicale, U 855, Lyon, 69372, France.
2. Universit¨¦ Claude Bernard Lyon 1, Lyon, 69008, France.
3. Universit¨¦ Claude Bernard Lyon 1, Villeurbanne, 69622, France.
4. Hospices Civils de Lyon, HFME, Bron, 69250, France
5. These authors contributed equally to the work.
Cell, 5 July 2012, http://dx.doi.org/10.1016/j.cell.2012.05.039
Research contact
Gilles Mithieux
Director of Inserm Unit 855 "Nutrition and the brain"
Tel: +33 (0)4 78 77 87 88
Mobile: +33 (0)6 07 39 71 92
Email: gilles.mithieux@inserm.fr
Press Contact
Myriam Rebeyrotte
Inserm press office
Tel: +33 (0)1 44 23 60 28
presse@inserm.fr

Inserm Press Office | EurekAlert!
Further information:
http://www.inserm.fr

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>