Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Research Explores Why Ancient Civilization Was ‘Livin’ on the Edge’

29.03.2011
The research, an ongoing project involving a multidisciplinary team of University of Cincinnati researchers, will be presented at the annual meeting of the Society for American Archaeology.

University of Cincinnati research is investigating why a highly sophisticated civilization decided to build large, bustling cities next to what is essentially swampland.

The research by UC Geography Professor Nicholas Dunning, a three-year, interdisciplinary project including David Lentz, professor of biological sciences, and Vern Scarborough, professor of anthropology, will be presented April 1 at the annual meeting of the Society for American Archaeology in Sacramento, Calif. This annual meeting draws more than 3,000 researchers from around the world to present research covering a wide range of topics and time periods.

Dunning’s research zeroes in on why larger and successful Maya communities were located along the edges of the massive wetlands of Tikal.

Supported by the National Science Foundation and the Wenner Gren Foundation, the UC researchers are exploring different aspects of the ancient Maya in one of the premier cities of the ancient Maya world, Tikal, located in northern Guatemala. It’s a region where architecture – pyramids, palaces and temples dating as far back as the fourth century B.C.– are still standing in tribute to this ancient, sophisticated, Native American society that largely disintegrated around 900 A.D. Their demise has remained a mystery for centuries.

Located near the southwestern margin of the Bajo de Sante Fe, it’s also a challenging region to conduct research. “It doesn’t take a lot of rain to make it impossible to get in and out of the bajos. They’re seasonal swamps. The mud gets deep very quickly,” explains Dunning.

But the researchers have found that when the Maya started building their cities adjacent to these wetlands, they were different environments than what exist now, Dunning says. Portions of the area where UC researchers are working once may have been a shallow lake and perennial wetlands from which early populations extracted organic, peat moss-like soil to help sustain nearby fields where the Maya were primarily farming maize. Over the years, the farming-on-the-edge practice on sloping land led to soil erosion that resulted in creating aprons of deep, rich soil along the interface between the uplands and the swamps.

“We have good evidence from Tikal and other sites in this region that these areas became the focal point where agriculture occurred in the Classic Period, where these anthropogenic soils were created at the base of the slopes,” Dunning says.

In regard to the edge farming, the researchers studied the soil and found significant amounts of pollen, which would indicate a significant amount of maize was produced. In addition, the organic matter produced from the corn was reflected in the soil’s composition.

The UC research was a joint project with Instituto de Antropología e Historía (de Guatemala) – IDEAH – under the Guatemalan government. Lentz and Scarborough will also be presenting findings related to their fields – regarding the Maya’s advances in forestry and water management – at the conference.

Dunning has been conducting research related to the geography of Guatemala since 1991. “One of the fascinating aspects of archaeology is that in reconstructing entire civilizations, one can’t understand how an ancient civilization worked from just one perspective, so it naturally lends itself to interdisciplinary work,” he says.

Additional authors and researchers on Dunning’s presentation are Robert Griffin, Penn State University, John G. Jones, Washington State University, Christopher Carr, a UC doctoral student in the geography program and Kevin Magee, who recently completed his PhD in the UC geography program.

Dawn Fuller | EurekAlert!
Further information:
http://www.uc.edu
http://www.uc.edu/news/NR.aspx?id=13335

Further reports about: Ancient African Exodus Archaeology Guatemala Maya ancient civilization

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>