Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splash, Babble, Sploosh: Computer Algorithm Simulates the Sounds of Water

08.06.2009
Cornell University computer graphics researchers use new algorithms to simulate a wide range of the sounds of water and other liquids. They will report their research at the 2009 ACM SIGGRAPH conference Aug. 3-7 in New Orleans, an international conference on computer graphics and interactive techniques.

Those are some of the sounds that have been missing from computer graphic simulations of water and other fluids, according to researchers in Cornell’s Department of Computer Science, who have come up with new algorithms to simulate such sounds to go with the images.


The work by Doug James, associate professor of computer science, and graduate student Changxi Zheng will be reported at the 2009 ACM SIGGRAPH conference Aug. 3-7 in New Orleans, an international conference on computer graphics and interactive techniques. It is the first step in a broader research program on sound synthesis supported by a $1.2 million grant from the Human Centered Computing Program of the National Science Foundation (NSF) to James, assistant professor Kavita Bala and associate professor Steve Marschner.

In computer-animated movies, sound can be added after the fact from recordings or by Foley artists. But as virtual worlds grow increasingly interactive, the researchers point out, sounds will need to be generated automatically to fit events that can’t be predicted in advance. Recordings can be cued in, but can be repetitive and not always well matched to what’s happening.

“We have no way to efficiently compute the sounds of water splashing, paper crumpling, hands clapping, wind in trees or a wine glass dropped onto the floor,” the researchers said in their research proposal.

Along with fluid sounds, the research also will simulate sounds made by objects in contact, like a bin of Legos; the noisy vibrations of thin shells, like trash cans or cymbals; and the sounds of brittle fracture, like breaking glass and the clattering of the resulting debris.

All the simulations will be based on the physics of the objects being simulated in computer graphics, calculating how those objects would vibrate if they actually existed, and how those vibrations would produce acoustic waves in the air. Physics-based simulations also can be used in design, just as visual simulation is now, James said. “You can tell what it’s going to sound like before you build it,” he explained, noting that a lot of effort often goes into making things quieter.

In their SIGGRAPH paper, Zheng and James report that most of the sounds of water are created by tiny air bubbles that form as water pours and splashes. Moving water traps air bubbles on the scale of a millimeter or so. Surface tension contracts the bubbles, compressing the air inside until it pushes back and expands the bubble. The repeated expansion and contraction over milliseconds generates vibrations in the water that eventually make its surface vibrate, acting like a loudspeaker to create sound waves in the air.

The simulation method developed by the Cornell researchers starts with the geometry of the scene, figures out where the bubbles would be and how they’re moving, computes the expected vibrations and finally the sounds they would produce. The simulation is done on a highly parallel computer, with each processor computing the effects of multiple bubbles. The researchers have fine-tuned the results by comparing their simulations with real water sounds.

Demonstration videos of simulations of falling, pouring, splashing and babbling water are available at http://www.cs.cornell.edu/projects/HarmonicFluids.

The current methods still require hours of offline computing time, and work best on compact sound sources, the researchers noted, but they said further development should make possible the real-time performance needed for interactive virtual environments and deal with larger sound sources such as swimming pools or perhaps even Niagara Falls. They also plan to approach the more complex collections of bubbles in foam or plumes.

The research reported in the SIGGRAPH paper was supported in part by an NSF Faculty Early Career Award to James, and by the Alfred P. Sloan Foundation, Pixar, Intel and Autodesk.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu
http://www.cs.cornell.edu/projects/HarmonicFluids

Further reports about: ACM NSF SIGGRAPH Splash air bubbles algorithm computer graphics virtual environment

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>