Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Singapore scientists discover genetic cause of common breast tumours in women

21.07.2014

Multi-disciplinary research team discovers that a gene known as MED12 is altered in nearly 60 percent of fibroadenomas

A multi-disciplinary team of scientists from the National Cancer Centre Singapore, Duke-NUS Graduate Medical School Singapore, and Singapore General Hospital have made a seminal breakthrough in understanding the molecular basis of fibroadenoma, one of the most common breast tumours diagnosed in women.


This is a stained histopathology slide of a fibroadenoma when viewed under low-power magnification, showing the mix of epithelial (dark) and stromal (light) cells.

Credit: Singapore General Hospital

The team, led by Professors Teh Bin Tean, Patrick Tan, Tan Puay Hoon and Steve Rozen, used advanced DNA sequencing technologies to identify a critical gene called MED12 that was repeatedly disrupted in nearly 60% of fibroadenoma cases. Their findings have been published in the top-ranked journal Nature Genetics.

Fibroadenomas are the most common benign breast tumours in women of reproductive age, affecting thousands of women in Singapore each year. Worldwide, it is estimated that millions of women are diagnosed with fibroadenoma annually. Frequently discovered in clinical workups for breast cancer diagnosis and during routine breast cancer screening, clinicians often face of challenge of distinguishing fibroadenomas from breast cancer.

To facilitate this diagnostic question, the team embarked on a study to identify if there are any genetic abnormalities in fibroadenomas that may be used to differentiate them. By analysing all the protein-coding genes in a panel of fibroadenomas from Singapore patients, the team identified frequent mutations in a gene called MED12 in a remarkable 60% of fibroadenomas.

Prof Tan Puay Hoon said, "It is amazing that these common breast tumours can be caused by such a precise disruption in a single gene. Our findings show that even common diseases can have a very exact genetic basis. Importantly, now that we know the cause of fibroadenoma, this research can have many potential applications."

Prof Tan added, "For example, measuring the MED12 gene in breast lumps may help clinicians to distinguish fibroadenomas from other types of breast cancer. Drugs targeting the MED12 pathway may also be useful in patients with multiple and recurrent fibroadenomas as this could help patients avoid surgery and relieve anxiety."

The team's findings have also deepened the conceptual understanding of how tumours can develop. Like most breast tumours including breast cancers, fibroadenomas consist of a mixed population of different cell types, called epithelial cells and stromal cells. However, unlike breast cancers where the genetic abnormalities arise from the epithelial cells, the scientists, using a technique called laser capture microdissection (LCM), showed that the pivotal MED12 mutations in fibroadenomas are found in the stromal cells.

Assoc Prof Steve Rozen said, "Stromal cells function to provide a supportive tissue around organs, and in breast cancers, are typically thought of as uninvolved or at least secondary bystanders in tumour formation. Our study shows that far from that, fibroadenomas and possibly other tumours may actually arise from genetic lesions in stromal cells. Targeting such stromal cells may be an important avenue for therapy in the future."

Reflecting its importance, the study also sheds light on the cause of uterine fibroids, another common benign tumour in women where similar MED12 mutations have been observed. Prof Patrick Tan said, "Combined with our data, the fact that MED12 mutations are shared, highly frequent, and specific to fibroadenomas and uterine fibroids strongly attests to a role for abnormal responses to female hormones in the birth of these tumours."

The scientists are already planning further studies to explore this possibility by investigating the role of MED12 in other categories of breast tumours.

The study also involved investigators from the Cancer Science Institute of Singapore, Genome Institute of Singapore, A*STAR, and National University Hospital. According to Prof Teh Bin Tean, "Our study's success was only possible due to a multi-institutional, multi-disciplinary collaboration centred on the concept of team science. The group, called BRGO (Breast Research Group at Outram), leverages on the diverse expertise of scientists and clinicians coming from fields such as molecular biology, bioinformatics, pathology, breast surgery and oncology."

###

Funding for this work was provided by the Singapore National Medical Research Council, the Singapore Millennium Foundation, the Lee Foundation, the Tanoto Foundation, the National Cancer Centre Singapore's NCC Research Fund, the Duke-NUS Graduate Medical School, the Cancer Science Institute, Singapore and the Verdant Foundation, Hong Kong.

Lydia Ng | Eurek Alert!
Further information:
http://www.singhealth.com.sg

Further reports about: Cancer MED12 Singapore breast fibroadenoma fibroids mutations tumours women

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>