Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot researcher combines nature to nurture ‘superhuman’ navigation

01.10.2014

Computer modelling of the human eye, the brain of a rat and a robot could revolutionise advances in neuroscience and new technology, says a QUT leading robotics researcher.

Dr Michael Milford from QUT's Science and Engineering Faculty says the new study uses new computer algorithms to enable robots to navigate intelligently, unrestricted by high-density buildings or tunnels.


Dr Michael Milford with one of the all-terrain robots to benefit from brain-inspired modelling.

"This is a very Frankenstein type of project," Dr Milford said.

"It's putting two halves of a thing together because we're taking the eyes of a human and linking them up with the brain of a rat.

"A rodent's spatial memory is strong but has very poor vision while humans can easily recognise where they are because of eyesight," he said.

"We have existing research, software algorithms in robots to model the human and rat brain.

"We'll plug in the two pieces of software together on a robot moving around in an environment and see what happens."

The research has been published in the British journal Philosophical Transactions of the Royal Society B.

Dr Milford said the research would also study how the human brain degrades, in particular how it fails to recognize familiar places.

"The brain's spatial navigation capabilities degrade early in diseases like Alzheimer's," he said.

"So it has relevance as a potential study mechanism for studying mental disease as well."

Dr Milford was awarded an Australian Research Council Future Fellowship to support his study.

He is one of Australia's leading experts on developing technology to visually recognise locations and is chief investigator at the QUT-based headquarters of the Australian Research Council Centre of Excellence in Robotic Vision.

Dr Milford said place recognition is a key component of navigation but the technology to date is limited.

"Current robotic and personal navigation systems leave much to be desired," he said.

"GPS only works in open outdoor areas, lasers are expensive and cameras are highly sensitive but in contrast, nature has evolved superb navigation systems."

Dr Milford said drivers could miss or take the wrong exit because personal navigation systems didn't work in tunnels because there was no satellite signal.

"That's an example of one of many ways we'd like to create really cool, useful technology," he said.

Dr Milford said he was motivated to create amazing technology through fundamental scientific work.

He said the research project could have benefits for manufacturing, environmental management and aged health.

"We have very sophisticated models of human vision and a rat's brain, which are already state of the art.

"We've got all the ground work there but plugging them altogether is the massive challenge we have.

"I don't know exactly how it's going to work and that's why it's research."

The interdisciplinary research project involves collaborations between QUT and the University of Queensland and other top international institutions including Harvard, Boston and Antwerp universities.

The future fellowship is worth $676,174 over the next five years.

Media contact:
Debra Nowland, QUT media officer (Tue/Wed/Thur), 07 3138 1150 or media@qut.edu.au

Debra Nowland | Eurek Alert!
Further information:
http://www.news.qut.edu.au/cgi-bin/WebObjects/News.woa/wa/goNewsPage?newsEventID=78859

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>