Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Rensselaer Polytechnic Institute Develop New Method for Mass-Producing Graphene

22.06.2010
New, Simple Technique Enables Large-Scale Production of Graphene at Room Temperature; Researchers Use Graphene to Build Chemical Sensors, Ultracapacitors

Researchers at Rensselaer Polytechnic Institute have developed a simple new method for producing large quantities of the promising nanomaterial graphene. The new technique works at room temperature, needs little processing, and paves the way for cost-effective mass production of graphene.

An atom-thick sheet of carbon arranged in a honeycomb structure, graphene has unique mechanical and electrical properties and is considered a potential heir to copper and silicon as the fundamental building block of nanoelectronics. Since graphene’s discovery in 2004, researchers have been searching for an easy method to produce it in bulk quantities.

A team of interdisciplinary researchers, led by Swastik Kar, research assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, has brought science a step closer to realizing this important goal. By submerging graphite in a mixture of dilute organic acid, alcohol, and water, and then exposing it to ultrasonic sound, the team discovered that the acid works as a “molecular wedge, ” which separates sheets of graphene from the parent graphite. The process results in the creation of large quantities of undamaged, high-quality graphene dispersed in water. Kar and team then used the graphene to build chemical sensors and ultracapacitors.

“There are other known techniques for fabricating graphene, but our process is advantageous for mass production as it is low cost, performed at room temperature, devoid of any harsh chemicals, and thus is friendly to a number of technologies where temperature and environmental limitations exist,” Kar said. “The process does not need any controlled environment chambers, which enhances its simplicity without compromising its scalability. This simplicity enabled us to directly demonstrate high-performance applications related to environmental sensing and energy storage, which have become issues of global importance.”

Results of the study, titled “Stable Aqueous Dispersions of Non-Covalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications,” were published online Thursday, June 17, 2010, by the journal Nano Letters. The study will also be the cover story of the November print edition of Nano Letters.

Graphene eluded scientists for years but was finally made in the laboratory in 2004 with the help of a common office supply – clear adhesive tape. Graphite, the common material used in most pencils, is made up of countless layers of graphene. Researchers at first simply used the gentle stickiness of tape to pull layers of graphene from a piece of graphite.

Today, graphene fabrication is much more sophisticated. The most commonly used method, however, which involves oxidizing graphite and reducing the oxide at a later stage in the process, results in a degradation of graphene’s attractive conductive properties, Kar said. His team took a different route.

The researchers dissolved 1-pyrenecarboxylic acid (PCA) in a solution of water and methanol, and then introduced bulk graphite powder. The pyrene part of PCA is mostly hydrophobic, and clings to the surface of the also-hydrophobic graphite. The mixture is exposed to ultrasonic sound, which vibrates and agitates the graphite. As the molecular bonds holding together the graphene sheets in graphite start to weaken because of the agitation, the PCA also exploits these weakening bonds and works its way between the layers of graphene that make up the graphite. Ultimately, this coordinated attack results in layers of graphene flaking off of the graphite and into the water. The PCA also helps ensure the graphene does not clump and remains evenly dispersed in the water. Water is benign, and is an ideal vehicle through which graphene can be introduced into new applications and areas of research, Kar said.

“We believe that our method also will be useful for applications of graphene which require an aqueous medium, such as biomolecular experiments with living cells, or investigations involving glucose or protein interactions with graphene,” he said.

Using ultrathin membranes fabricated from graphene, the research team developed chemical sensors that can easily identify ethanol from within a mixture of different gases and vapors. Such a sensor could possibly be used as an industrial leakage detector or a breath-alcohol analyzer. The researchers also used the graphene to build an ultra-thin energy-storage device. The double-layer capacitor demonstrated high specific capacitance, power, and energy density, and performed far superior to similar devices fabricated in the past using graphene. Both devices show great promise for further performance enhancements, Kar said.

Co-authors on the Nano Letters paper are Rensselaer Post Doctoral Research Associate Xiaohong An; Assistant Professor Kim M. Lewis; Clinical Professor and Center for Integrated Electronics Associate Director Morris Washington; and Professor Saroj Nayak, all of the Department of Physics, Applied Physics, and Astronomy; Rensselaer post-doctoral researcher Trevor Simmons of the Department of Chemistry and Chemical Biology; along with Rakesh Shah, Christopher Wolfe, and Saikat Talapatra of the Department of Physics at Southern Illinois University Carbondale.

The research project was supported by the Interconnect Focus Center New York at Rensselaer, as well as the National Science Foundation (NSF) Division of Electrical, Communications and Cyber Systems.

For more information on Kar’s research, visit his website at:

http://www.rpi.edu/dept/phys/faculty/profiles/kar.html
For more information on graphene research at Rensselaer, visit:
Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials - http://news.rpi.edu/update.do?artcenterkey=2715
Student Inventor Tackles Challenge of Hydrogen Storage - http://news.rpi.edu/update.do?artcenterkey=2690
Light-Speed Nanotech: Controlling the Nature of Graphene - http://news.rpi.edu/update.do?artcenterkey=2528
Graphene Nanoelectronics: Making Tomorrow’s Computers from a Pencil Trace - http://news.rpi.edu/update.do?artcenterkey=2253

Published June 21, 2010

Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | Rensselaer Polytechnic Institute
Further information:
http://www.rpi.edu

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>