Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature leads the way for the next generation of paints, cosmetics and holograms

04.10.2007
A plant-like micro-organism mostly found in oceans could make the manufacture of products, from iridescent cosmetics, paints and fabrics to credit card holograms, cheaper and ‘greener’.

The tiny single-celled ‘diatom’, which first evolved hundreds of millions of years ago, has a hard silica shell which is iridescent – in other words, the shell displays vivid colours that change depending on the angle at which it is observed. This effect is caused by a complex network of tiny holes in the shell which interfere with light waves.

UK scientists have now found an extremely effective way of growing diatoms in controlled laboratory conditions, with potential for scale-up to industrial level. This would enable diatom shells to be mass-produced, harvested and mixed into paints, cosmetics and clothing to create stunning colour-changing effects, or embedded into polymers to produce difficult-to-forge holograms.

Manufacturing consumer products with these properties currently requires energy-intensive, high-temperature, high-pressure industrial processes that create tiny artificial reflectors. But farming diatom shells, which essentially harnesses a natural growth process, could provide an alternative that takes place at normal room temperature and pressure, dramatically reducing energy needs and so cutting carbon dioxide emissions. The process is also extremely rapid – in the right conditions, one diatom can give rise to 100 million descendants in a month.

This ground-breaking advance has been achieved by scientists at the Natural History Museum and the University of Oxford, with funding from the Engineering and Physical Sciences Research Council (EPSRC). The project involved a range of experts from disciplines including biology, chemistry, physics, engineering and materials science.

“It’s a very efficient and cost-effective process, with a low carbon footprint,” says Professor Andrew Parker, who led the research. “Its simplicity and its economic and environmental benefits could in future encourage industry to develop a much wider range of exciting products that change colour as they or the observer move position. What’s more, the shells themselves are completely biodegradable, aiding eventual disposal and further reducing the environmental impact of the process life cycle.”

The new technique basically lets nature do the hard work. It involves taking a diatom or other living cells such as those that make iridescent butterfly scales, and immersing them in a culture medium – a solution containing nutrients, hormones, minerals etc that encourage cell subdivision and growth. By changing the precise make-up of the culture medium, the exact iridescent properties of the diatoms or butterfly scales (and therefore the final optical effects that they create) can be adjusted. The researchers estimate that up to 1 tonne/day of diatoms could be produced in the laboratory in this way, starting from just a few cells. Within as little as two years, an industrial-scale process could be operational.

“It’s a mystery why diatoms have iridescent qualities,” says Professor Parker. “It may have something to do with maximising sunlight capture to aid photosynthesis in some species; on the other hand, it could be linked with the need to ensure that sunlight capture is not excessive in others. Whatever the case, exploiting their tiny shells’ remarkable properties could make a big impact across industry. They could even have the potential to be incorporated into paint to provide a water-repellent surface, making it self-cleaning.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk/

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>