# Forum for Science, Industry and Business

Search our Site:

## Maths cracks egg flip

28.03.2002

Friction pushes a spinning egg from horizontal to vertical.

Mathematicians have cracked the conundrum of the spinning egg. A hard-boiled egg spun on its side flips upright because of friction between the egg and the table, they calculate1.

The egg’s elevation appears paradoxical. Its centre of gravity moves up - making the system seem to be gaining energy.

In fact, spinning energy, translated into a horizontal force, pushes the egg upright, say Keith Moffatt of the , Japan.

"The egg sacrifices spin energy to achieve its rise," says Moffatt. A twirled raw egg doesn’t rise because its liquid centre soaks up spinning energy from the shell, stopping it powering the egg’s ascent.

There would be no horizontal force on a perfectly smooth table, the duo point out. But neither must the surface grip the egg too much. The egg ascends in jerks, not a smooth roll.

"You have to have slipping between the egg and the surface," advises Moffatt. "If you tried this on a hard rubber table it wouldn’t rise."

"Friction is absolutely crucial," agrees physicist Bernie Nickel of the University of Guelph in Canada. Nickel has analysed the physics of the ’tippe-top’, a mushroom-shaped toy that flips from spinning on its round end to its stalk. "The egg is a rather more complicated shape," he says.

Understanding the dynamics of rotating objects is a fundamental problem. Spacecraft engineers, for example, need to know how their creations will spin in the void. But Moffatt cautions that the egg’s interaction with the surface underneath it makes it dangerous to extrapolate to zero gravity.

In a spin

There is a critical spinning speed below which the egg stays horizontal. This is about ten revolutions per second - roughly the speed it reaches after a firm flick of the wrist.

As the egg rises, its spinning form is more compact, making it whirl more quickly. "It’s like when a turning figure-skater speeds up by pulling in his or her arms," Nickel says.

The egg’s initial orientation doesn’t matter, and it will pirouette on either pole. "I think it prefers to go up on the sharper end," Moffatt speculates.

References
1. Moffatt, H.K. & Shimomura, Y. Spinning eggs - a paradox resolved. Nature, 416, 385 - 386, (2002).

JOHN WHITFIELD | © Nature News Service

### More articles from Interdisciplinary Research:

Drugs for better long-term treatment of poorly controlled asthma discovered
15.10.2019 | University of South Florida (USF Health)

Epilepsy: Seizures not forecastable as expected
25.09.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

### Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

### Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

### Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

### Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

### Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige