Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel salamander robot crawls its way up the evolutionary ladder

12.03.2007
A group of European researchers has developed a spinal cord model of the salamander and implemented it in a novel amphibious salamander-like robot. The robot changes its speed and gait in response to simple electrical signals, suggesting that the distributed neural system in the spinal cord holds the key to vertebrates’ complex locomotor capabilities.

In a paper appearing in the March 9, 2007 issue of the journal Science, scientists from the EPFL in Switzerland and the INSERM research center/University of Bordeaux in France introduce their robot, Salamandra Robotica. This four-legged yellow creature reveals a great deal about the evolution of vertebrate locomotion. It’s also a vivid demonstration that robots can be used to test and verify biological concepts, and that very often nature herself offers ideal solutions for robotics design.

The researchers used a numerical model of the salamander’s spinal cord to explore three fundamental issues related to this vertebrate’s movement: what were the changes in the spinal cord that made it possible to evolve from aquatic to terrestrial locomotion? How are the limb and axial movements coordinated? And how is a simple electrical signal from the brain stem translated by the spinal cord into a change in gait?

Once they thought they had answers to these questions, the team implemented the model – a system of coupled oscillators representing the neural networks in the spinal cord – on a primitive salamander-like robot. Simple electrical signals, like the signals sent from the upper brain to the spinal cord, were sent wirelessly from a laptop to the robot. These signals were enough to cause the robot to change its speed and direction and change from walking to swimming. The model therefore provides a potential explanation – relevant for all four-legged organisms – of how agile locomotion is controlled by distributed neural mechanisms located in the spinal cord.

The robot serves here as a useful tool for neurobiology, explains EPFL professor Auke Ijspeert. "We used the robot to show that our model actually reflects reality.

The robot was very useful to validate that our model could effectively modulate speed, direction and gait – aspects that need a mechanical "body" to be properly evaluated – and also to verify that the generated movements are close to those of a real salamander."

This research may ultimately point to a way to gain better understanding of the more sophisticated circuits in the human spinal cord. If the control signals received by the spinal cord could be identified, perhaps it would be possible to re-initiate these by electrical stimulations in patients with spinal cord injuries.

And it’s a vivid demonstration that biology offers unique ideas for robotics design. "Nature found a nice way of making a sophisticated circuit in the spinal cord and then controlling the muscles from there," notes Ijspeert. "It’s a fantastic solution for coordinating multiple degrees of freedom in a simple distributed way." Robots that could change their speed, direction, and gait based on simple remote signals, like living organisms, would be extremely useful in search and rescue operations, for example.

Auke Ijspeert | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>