Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BabyBot takes first steps

03.05.2006


Babybot learn to take first steps ©ADAPT


BabyBot, a robot modelled on the torso of a two year-old child, is helping researchers take the first, tottering steps towards understanding human perception, and could lead to the development of machines that can perceive and interact with their environment.

The researchers used BabyBot to test a model of the human sense of ’presence’, a combination of senses like sight, hearing and touch. The work could have enormous applications in robotics, artificial intelligence (AI) and machine perception. The research is being funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, as part of the ADAPT project.

"Our sense of presence is essentially our consciousness," says Giorgio Metta, Assistant Professor at the Laboratory for Integrated Advanced Robotics at Italy’s Genoa University and ADAPT project coordinator.



Modelling, or defining, consciousness remains one of the intractable problems of both science and philosophy. "The problem is duality, where does the brain end and the mind begin, the question is whether we need to consider them as two different aspects of reality," says Metta.

Neuroscientists would tend to develop theories that fit the observed phenomena, but engineers take a practical approach. Their objective is to make it work.

To that end, ADAPT first studied how the perception of self in the environment emerges during the early stages of human development. So developmental psychologists tested 6 to 18 month-old infants. "We could control a lot of the parameters to see how young children perceive and interact with the world around them. What they do when interacting with their mothers or strangers, what they see, the objects they interact with, for example," says Metta.

From this work they developed a ’process’ model of consciousness. This assumes that objects in the environment are not real physical objects as such; rather they are part of a process of perception.

The practical upshot is that, while other models describe consciousness as perception, cognition then action, the ADAPT model sees it as action, cognition then perception. And it’s how babies act, too.

When a baby sees an object that is not the final perception of it. A young child will then try to reach the object. If the child fails, the object is too far away. This teaches the child perspective. If the child does reach the object, he or she will try to grasp it, or taste it or shake it. These actions all teach the child about the object and govern its perception of it. It is a cumulative process rather than a single act.

Our expectations also have enormous influence on our perception. For example, if you believe an empty pot is full, you will lift the pot very quickly. Your muscles unconsciously prepare for the expected resistance, and put more force than is required into lifting; everyday proof that our expectations govern our relationship with the environment.

Or at least that’s the model. "It’s not validated. It’s a starting point to understand the problem," says Metta.

The team used BabyBot to test it, providing a minimal set of instructions, just enough for BabyBot to act on the environment. For the senses, the team used sound, vision and touch, and focused on simple objects within the environment.

There were two experiments, one where BabyBot could touch an object and second one where it could grasp the object. This is more difficult than it sounds. If you look at a scene, you unconsciously segment the scene into separate elements.

This is a highly developed skill, but by simply interacting with the environment the BabyBot did its engineering parents proud when it demonstrated that it could learn to successfully separate objects from the background.

Once the visual scene was segmented, the robot could start learning about specific properties of objects useful, for instance, to grasp them. Grasping opens a wider world to the robot and to young infants too.

The work was successful, but it was a very early proof-of-principle for their approach. The sense of presence, or consciousness, is a huge problem and ADAPT did not seek to solve it in one project. They made a very promising start and many of the partners will take part in a new IST project, called ROBOTCUB.

In ROBOTCUB the engineers will refine their robot so that it can see, hear and touch its environment. Eventually it will be able to crawl, too.

"Ultimately, this work will have a huge range of applications, from virtual reality, robotics and AI, to psychology and the development of robots as tools for neuro-scientific research," concludes Metta.

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81616
http://istresults.cordis.lu/

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>