Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subliminal sights educate brain

25.10.2001


Today’s busy world could overwhealm our ever-learning brains.
© Photodisc


Paying attention isn’t the only way to learn.

You must pay attention to learn, teachers say. Not necessarily, US psychologists now argue: sights we are unaware of can have a lasting impact on our brains.

Subliminal training can improve our ability to see moving dots, Takeo Watanabe and his co-workers at Boston University, Massachusetts, have found. "Without noticing, we are unconsciously learning," Watanabe says. Repeated exposure to objects we are oblivious to "could have a tremendous effect on our brains", he says.



The findings show that for basic visual processes "the brain is never resting", says Robert Stickgold, who studies consciousness at Harvard University in Cambridge, Massachusetts.

Psychologists must now ask whether we can learn more complex tasks without paying attention, says Stickgold. Although for students looking to skip school he cautions that "No one’s going to learn a foreign language without going to lessons."

Live and learn

We are learning automatically as we walk around, explains Ken Nakayama, who studies vision at Harvard. "Patterns pass us all the time," he says, like cars and people on the street. Subconscious learning may be an efficient way to absorb these sideline features without trying. "You can’t pay attention to everything," he says.

Such a learning strategy may have evolved to help us incorporate recurrent, and therefore important, information about our environment into our memory, thinks Watanabe. Animal movements are a good example.

The results also suggest we cannot screen out irrelevant, unwanted information. This is worrying, given that today we are bombarded with moving images from TVs, neon signs and even mobile phone displays. "The less the world we’re living in is like the one we evolved in, the more the mechanism is inappropriate," says Stickgold.

Join the dots

Watanabe’s team asked subjects to look at letters on a screen. Surrounding the letters were dots moving randomly, like the background fuzz after TV programmes have ended for the night. The participants did not realise that 5% of the dots were moving consistently in one direction.

After 25 days of subliminal training, people were tested on their ability to see a detectable level (10%) of dots moving in one direction. They were 20% better than normal at seeing the movement orientation they had previously been exposed to1.

Certain features of an object, such as movement or colour, make nerve cells in the brain fire. Subliminal training may fine-tune these cells, making them especially sensitive to a particular direction of motion, the team thinks.

References
  1. Watanabe, T., Nanez, J.E. & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844 - 848, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-12.html
http://www.nature.com/nsu/

More articles from Interdisciplinary Research:

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>