Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subliminal sights educate brain

25.10.2001


Today’s busy world could overwhealm our ever-learning brains.
© Photodisc


Paying attention isn’t the only way to learn.

You must pay attention to learn, teachers say. Not necessarily, US psychologists now argue: sights we are unaware of can have a lasting impact on our brains.

Subliminal training can improve our ability to see moving dots, Takeo Watanabe and his co-workers at Boston University, Massachusetts, have found. "Without noticing, we are unconsciously learning," Watanabe says. Repeated exposure to objects we are oblivious to "could have a tremendous effect on our brains", he says.



The findings show that for basic visual processes "the brain is never resting", says Robert Stickgold, who studies consciousness at Harvard University in Cambridge, Massachusetts.

Psychologists must now ask whether we can learn more complex tasks without paying attention, says Stickgold. Although for students looking to skip school he cautions that "No one’s going to learn a foreign language without going to lessons."

Live and learn

We are learning automatically as we walk around, explains Ken Nakayama, who studies vision at Harvard. "Patterns pass us all the time," he says, like cars and people on the street. Subconscious learning may be an efficient way to absorb these sideline features without trying. "You can’t pay attention to everything," he says.

Such a learning strategy may have evolved to help us incorporate recurrent, and therefore important, information about our environment into our memory, thinks Watanabe. Animal movements are a good example.

The results also suggest we cannot screen out irrelevant, unwanted information. This is worrying, given that today we are bombarded with moving images from TVs, neon signs and even mobile phone displays. "The less the world we’re living in is like the one we evolved in, the more the mechanism is inappropriate," says Stickgold.

Join the dots

Watanabe’s team asked subjects to look at letters on a screen. Surrounding the letters were dots moving randomly, like the background fuzz after TV programmes have ended for the night. The participants did not realise that 5% of the dots were moving consistently in one direction.

After 25 days of subliminal training, people were tested on their ability to see a detectable level (10%) of dots moving in one direction. They were 20% better than normal at seeing the movement orientation they had previously been exposed to1.

Certain features of an object, such as movement or colour, make nerve cells in the brain fire. Subliminal training may fine-tune these cells, making them especially sensitive to a particular direction of motion, the team thinks.

References
  1. Watanabe, T., Nanez, J.E. & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844 - 848, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-12.html
http://www.nature.com/nsu/

More articles from Interdisciplinary Research:

nachricht Epilepsy: Seizures not forecastable as expected
25.09.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Dresden creates ground-breaking interface between technology and medicine
05.09.2019 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>