Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists study mad cow-type diseases

26.01.2004


Using math and physics to investigate mad cow disease (bovine spongiform encephalopathy or BSE) and similar diseases caused by infectious proteins called prions is the aim of research by physicists Daniel Cox, Rajiv Singh and colleagues at UC Davis. The researchers are using mathematical models to study issues such as the incubation time, prion "strains" and treatment or detection strategies.



Diseases such as BSE in cattle, Creutzfeld-Jakob disease in humans and chronic wasting disease in deer are all apparently caused by prions, misfolded versions of a normal brain protein. Similar diseases have been found in other animals including cats, mink and rodents, and prion-type proteins have even been found in yeast.

Prions seem to cause disease by triggering normal versions of the same protein to spontaneously fold up the wrong way, creating growing mats and tangles.


The UC Davis researchers have developed mathematical models to simulate this process. The models reproduce how prions collect around an original "seed" prion, and how these clumps subsequently break up and spread around the brain and nervous system.

Predictions from the models compare well with the course of actual disease in both small and large animals, Cox said.

Cox and colleagues are now using the model system to investigate the minimal requirements for prions to cause disease; how "strains" of prions can exist and what effect they have; and potential treatment strategies.


Media contact: * Daniel Cox, Physics, 530-752-1789, cox@physics.ucdavis.edu (Cox is best contacted by email.)

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Interdisciplinary Research:

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>