Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont-led scientists unveil key nanotechnology discovery with use of DNA

02.12.2003


Sorting carbon nanotubes provides significant step in advancing nano-electronics applications



A collaborative group of DuPont-led scientists have discovered an innovative way to advance electronics applications through the use of DNA that sorts carbon nanotubes.

This research in the emerging field of nanotechnology appears in the current issue of the journal Science, which is published by the AAAS – the world’s largest general scientific organization. The research paper is titled "Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly."


Carbon nanotubes possess excellent electrical properties that make them potential building blocks in a broad range of nanotechnology-related electronic applications, including highly sensitive medical diagnostic devices and mini-transistors more than 100 times tinier than those found in today’s microchips. When they are fabricated, however, carbon nanotubes of different electronic types randomly clump together, deterring consistent conductivity. The ability to sort and assemble carbon nanotubes allows for uniform conductivity – enabling the applications to be realized.

Initially, DuPont Central Research & Development scientists found that single-stranded DNA strongly interacts with carbon nanotubes to form a stable DNA-carbon nanotube hybrid that effectively disperses carbon nanotubes in an aqueous solution.

As a follow-up to that initial work, a multidisciplinary team of scientists from DuPont, the Massachusetts Institute for Technology (MIT) and the University of Illinois worked together to discover a new method for separating carbon nanotubes using single stranded DNA and anion-exchange chromatography. By screening a library of oligonucleotides, the team found that a particular sequence of single stranded DNA self-assembles into a helical structure around individual carbon nanotubes. Since carbon nanotube-DNA hybrids have different electrostatic properties that depend on the nanotubes’ diameter and electronic properties, they can be separated and sorted using anion exchange chromatography. The technique can be used to separate metallic carbon nanotubes from semiconducting carbon nanotubes, both which are created during nanotube production. The technique also can sort semiconducting carbon nanotubes by diameters, an important element in nanoelectronic applications. The collaborative work is further detailed in the current edition of Science.

"Wrapping of carbon nanotubes by single-stranded DNA was found to be sequence-dependent," said DuPont Central Research & Development scientist Ming Zheng. "This outstanding collaborative effort is a good example how researchers from both industry and academic institutions can work together in a multidisciplinary approach to further advance this emerging technology."

DuPont Central Research & Development scientists who contributed to the research were Ming Zheng, Anand Jagota, Bruce A. Diner, Robert S. McLean, G. Bibiana Onoa, Ellen D. Semke and Dennis J. Walls. University of Illinois contributors were Michael S. Strano, Paul Barone, and Monica Usrey. MIT contributors were Adelina P. Santos, Grace Chou, Mildred S. Dresselhaus, and Georgii G. Samsonidze.


DuPont is a science company. Founded in 1802, DuPont puts science to work by solving problems and creating solutions that make people’s lives better, safer and easier. Operating in more than 70 countries, the company offers a wide range of products and services to markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>