Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists build a bridge for new bone

17.06.2003


Scanning electron micrograph of a foam structure
(Image: M. Shoichet, IBBME)


Biodegradable scaffold significantly increases the rate of bone healing

University of Toronto scientists have developed a biodegradable scaffold, similar in structure to a dish sponge, that significantly speeds the rate of bone healing.

The material, developed by an interdisciplinary team with expertise in engineering, biology, chemistry and dentistry, provides a building scaffold for bone growth. The scaffold, which eventually dissolves, increases healing rates and offers a potential new treatment for bone loss in cases such as trauma or spinal fusions.



"We have been successful in stimulating cell and tissue growth in the laboratory and animal models and in replacing bone with bone-the underlying principle of bone tissue engineering," says co-investigator Molly Shoichet, a professor of chemical engineering and applied chemistry at the Institute for Biomaterials and Biomedical Engineering (IBBME). The study appears in the June 15 issue of the Journal of Biomedical Materials Research Part A.

Bone automatically replaces itself, allowing healing of injuries such as fractures. But in some traumatic cases, there is too much damage for the bone to heal on its own. Bone grafting, or moving bone from one body part to another, is a common solution in fields such as orthopedics or dentistry, says IBBME co-investigator Professor John Davies. "The problem is that there’s often not enough of the patient’s bone to move from one site to another, so you’ve got to resort to other means of generating bone," he says.

Davies, Shoichet, Jeff Fialkov, a surgeon at Sunnybrook and Women’s College Health Sciences Centre, and graduate student Chantal Holy started experimenting in 1995 with polymers and natural bone tissue to find a new method of bone regeneration. They developed a biodegradable scaffold with polymers similar to those found in dissolving sutures and with a structure similar to a large-pored dishwashing sponge. The size of the pores is critical, says Davies. "When you put material like this in the body, the host tissue can grow into these areas very rapidly and very efficiently."

The team then implanted the scaffolds-seeded with bone marrow cells-in the damaged femur bones of rabbits. Within six weeks, the animals could walk on the legs containing the scaffolds. Within eight weeks, the bone marrow cells had developed into bone throughout the entire volume of the scaffold, which gradually dissolved. "Animals with scaffolds healed at a significantly faster rate [than those without the scaffolds]," says Shoichet.


The researchers point out that their technique does not require the use of expensive chemicals called bone growth factors used to stimulate bone growth.

The team now plans to study the scaffolds in larger animals, with the ultimate goal of creating a human treatment that could speed the early healing of bone trauma. "When people are treated in hospitals, they want medicines or therapies that can get them up and going as quickly as possible," says Davies. "It’s not only better for the patient, but it gets the patient out of their bed and out of the hospital soon so there’s less cost to the health care system."

The study was funded by the Canadian Institutes of Health Research, the Ontario Research and Development Challenge Fund, BoneTec Corp. and the Physician’s Services’ Incorporated Foundation.


CONTACT:

Molly Shoichet, IBBME, ph: (416) 978-1460; email: molly@ecf.utoronto.ca

John Davies, IBBME, ph: (416) 978-1471; email: davies@ecf.utoronto.ca

U of T Public Affairs, ph: (416) 978-6974; email: nicolle.wahl@utoronto.ca


Nicolle Wahl | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin2/010912b.asp

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>