Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deciphering how arteries contribute to hypertension

11.06.2003


National Insitute of Standards and Technology (NIST) scientists are taking their knowledge of mechanical tensile strength tests in metals and composites and applying it to medical research problems. Doctors long have known that babies born with congenital heart defects at higher altitudes have an increased risk of developing complications, such as pulmonary hypertension. Could there be some way to trick the arterial walls so that they wouldn’t stiffen under increased blood pressure?



Working with the Children’s Hospital and University of Colorado Health Sciences Center in Denver, NIST researchers have used rat arteries--both normal and hypertensive--supplied by the university center and placed them in a mechanical stress tester. The tester holds a small disc-shaped sample of the arterial tissue that is slowly stretched by pumping a special liquid against the back of the disc. The pressure of the liquid causes a bubble to form on the front of the disc. The shape of the resulting bubble helps the researchers determine details about the tissues’ elasticity, strength, stiffness and other properties.

" Hypertensive tissue should be stiffer, so we will get less inflation with the same amount of pressure," says NIST researcher Elizabeth Drexler. "What we want to know is what it is in the artery that causes it to stiffen. Is it more collagen? Is it the smooth muscle cells? Perhaps we could give the muscle cell a signal not to produce more collagen." So far they have studied 20 rat arteries and plan to study 20 more, along with some calf arteries. A preliminary report that verifies their test method appears in the May/June issue of the NIST Journal of Research.


Fred McGehan | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Interdisciplinary Research:

nachricht A fresh twist in chiral topology
22.06.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Unlocking PNA's superpowers for self-assembling nanostructures
12.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>