Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MelTec Forms Alliance with Fraunhofer Institute FIT

21.01.2003


Next-Generation IT Platform for Topological Proteomics to be Created



MelTec GmbH and the Fraunhofer Institute for Applied Information Technology FIT today signed a collaboration agreement to develop an information technology platform for the management and interpretation of high-throughput experiments analysing protein networks of whole cells in situ, also known as topological proteomics or toponomics. MelTec continuously generates large data sets to decipher the toponome of cells and tissues by tracing out and interpreting the context of proteins in cells.

Under this agreement, FIT and MelTec will develop new software-based approaches to analyse and visualise protein networks, and then correlate that data with results from in-vitro and in-vivo experiments. Using MelTec’s robotic toponomics imaging technology in combination with FIT’s image management and proteomics software, they will create a bioinformatics platform for the systematic interpretation of these vast protein networks. The system will rapidly produce high quality results for understanding how proteins impact a drug’s effectiveness.


"Our Topological Proteomics technologies combine cell biology and bio-mathematical tools to visualize 3-Dimensional protein-networks at the cellular and subcellular level," said Walter Schubert, M.D., Founder and Chief Executive Officer of MelTec. "This new system has the potential to become a key technology that paves the way for a more systematic approach to understanding disease pathology and treatment, by looking at how protein networks in cells determine cellular function. The alliance with FIT will accelerate our discovery program."

"Large-scale image-based experiments require advanced information management approaches that combine storage, processing and interactive exploration capabilities," said Prof. Dr. Thomas Berlage, Institute Director at the Fraunhofer Institute for Applied Information Technology FIT. "Our alliance will allow us to create an integrated environment that enables biologists to quickly identify and validate functional aspects of living cells."

About MelTec
MelTec GmbH is a privately held biotechnology company specializing in using topological proteomics to identify mechanisms underlying disease pathology, drug targets and to prioritize lead compounds focused on immune-mediated disease, neurological disorders, cancer, and arteriosclerosis. MelTec’s proprietary robotic imaging technology, MELK (Multi-Epitope-Ligand-Kartographie), performs completely automated proteomic characterization of single cells, for hundreds of proteins simultaneously, thus identifying the proteomic fingerprint, or the topology, of individual cells, such as lymphocytes. Using its technology, MelTec believes that it can greatly accelerate pre-clinical research in the drug development process, and has already identified new targets and lead compounds in amyotrophic lateral sclerosis (ALS, Lou Gehrig’s Disease) and cancer.

About Fraunhofer FIT
The Fraunhofer Institute for Applied Information Technology FIT is one of the 56 institutes of the Fraunhofer Society in Germany. FIT investigates user-oriented information and cooperation systems, focusing on the interaction of actual work practices, organizational structure and processes, in close cooperation with its clients from industry and public administration. One major application area is life science, where diagnostic and therapeutic approaches are increasingly relying on image-based technologies and integrated computerized approaches. FIT is pursuing research on novel software systems that address the anatomical, physiological and molecular levels of life.


Alex Deeg | idw
Further information:
http://www.fit.fraunhofer.de/
http://www.meltec.de/

More articles from Interdisciplinary Research:

nachricht A fresh twist in chiral topology
22.06.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Unlocking PNA's superpowers for self-assembling nanostructures
12.06.2020 | College of Engineering, Carnegie Mellon University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>