Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA payloads feature on Space Shuttle research mission

16.01.2003


European scientists will be ‘turning off’ the effects of gravity during the STS-107 Space Shuttle research mission this month in order to gain a better understanding of processes in medicine, technology and science.


The image above shows the view from the Space Shuttle’s cabin towards the Spacehab science module during the 16-day Neurolab research mission in the spring of 1998.

Credits: NASA


STS-107 crew: Rick D. Husband (seated at front left), William McCool (seated at front right) , (standing from left) David Brown, Laurel Clark, Kalpana Chawla, Michel Anderson and Ilan Ramon.



Their investigations will be among some 80 experiments performed during a 16-day mission in Earth orbit to be launched from Cape Canaveral tomorrow.

Seven of the 31 payloads are sponsored by ESA, and the crew will work 24 hours a day in two alternating shifts on experiments covering astronaut health and safety, advanced technology development, and life and physical sciences.


The Shuttle mission is a dress rehearsal for routine research operations on board the International Space Station, currently being assembled in orbit. ESA’s involvement in STS-107 is the outcome of a barter agreement with NASA.

"Under the barter agreement, ESA has provided NASA with an Airbus Super Guppy to fly large International Space Station elements across the US and in exchange has the opportunity to fly 450 kg of microgravity payload on NASA Space Shuttle missions", explains Jörg Feustel-Büechl, ESA’s Director of Human Spaceflight.

Six of the seven ESA payloads will perform life or physical science experiments – the Advanced Protein Crystallisation Facility (APCF), the Advanced Respiratory Monitoring System (ARMS), Biobox, Biopack, the European Research in Space and Terrestrial Osteoporosis (ERISTO) facility, and the Facility for Adsorption and Surface Tension studies (FAST).

The seventh is a technology demonstration called the Combined 2 Phase Loop Experiment (COM2PLEX), which will test three new heat transfer systems for thermal control of instruments on satellites.

"STS-107 is a very important mission for Europe. It builds on our experience with Spacelab on dedicated Shuttle flights and will ultimately support longer, more ambitious research aboard the Space Station," said Marc Heppener, Head of ESA’s International Space Station Utilisation and Microgravity Promotion Division.

In addition to the research being performed already aboard the International Space Station while it is still being assembled, such Shuttle missions are important because they allow scientists and researchers to ‘turn off’ the effects of gravity and unmask basic phenomena that play key roles in biology, physics, and chemistry.

ESA’s scientific payloads are concentrated in a pressurised module known as Spacehab, located in the Shuttle’s payload bay and connected to the Shuttle crew compartment by a tunnel. The concept and the technology of Spacehab are derived from ESA’s Spacelab programme.

Europe has a long history of participation in Shuttle flights with an emphasis on microgravity research – from the early days of Spacelab to the more recent Neurolab.

ESA mission manager, Pasquale Di Palermo, describes the flight as "a valuable opportunity for Europe both to experiment in space and to prepare on the ground so as to be ready for full operations on board the Space Station".

The ESA payloads involve the crew in numerous activities – from straightforward activation of the experiments to all procedures involved in their in-orbit operation including, if necessary, repair.

For ARMS in particular, the crew are actually part of the experiment and have undergone intensive training to ensure that they are familiar with the equipment and can carry out medical tests on themselves.

ARMS, on its first ever flight, is designed for respiratory and cardiovascular monitoring in microgravity, allowing scientists to unveil the workings of a complex human system whose functions are normally masked by gravity.

By putting four crew members through a carefully controlled set of exercise and test routines before, during and after the mission, ARMS will measure changes caused by the absence of gravity in their pulmonary and cardiovascular functions.

After the STS-107 mission, ARMS will become a key ground research tool with exciting long-term prospects – from developing new medical diagnostic tools which may help doctors to determine physical fitness and even predict illness, through to devising new kinds of rehabilitation for specific illnesses.

For further details contact:

Pasquale Di Palermo
STS 107 Mission Manager
Tel: +1-281-467-1320

ESA Media Relations Service
Tel: +33(0)1.53.69.7155
Fax: +33(0)1.53.69.7690

Pasquale Di Palermo | EurekAlert!

More articles from Interdisciplinary Research:

nachricht OU study expands understanding of bacterial communities for wastewater treatment system
14.05.2019 | University of Oklahoma

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>