Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overlapping genetic and archaeological evidence suggests neolithic migration

11.09.2002


For the first time, Stanford researchers have compared genetic patterns with archeological findings to discover that genetics can help predict with a high degree of accuracy the presence of certain artifacts. And they say the strength of this link adds credence to theories that prehistoric people migrated from the Middle East to Europe, taking both their ideas and their way of life with them.



"The recovery of history is really a jigsaw puzzle," said Peter Underhill, PhD, senior research scientist in the department of genetics and one of the study’s authors. "You have to look at genetics, material culture (archeological findings), linguistics and other areas to find different lines of evidence that reinforce each other."

The researchers’ mathematical analysis showed that a pair of mutations on the Y chromosome, called Eu9, predicted the presence of certain figurines from the Neolithic period with 88 percent accuracy and the presence of painted pottery with 80 percent accuracy. The study is published in the September issue of Antiquity.


"The strength of the association is very surprising," said Roy King, MD, PhD, associate professor of psychiatry and behavioral sciences at Stanford who co-authored the study. "The genetic measures are very precise, and archaeology is pretty precise - either a figurine is there or it isn’t. The strength of the correlation is driven by the strength of our measures."

It is known that agriculture spread from the Middle East to Europe during the Neolithic period about 12,000 years ago, but for many years archeologists have debated how this occurred. Was it due to the movement of people or to the movement of ideas? Previous genetic analysis of people living today suggests a migration - that the people moved - but critics have questioned this view. The latest study reinforces evidence of a migration in which people brought their ideas and lifestyle with them.

Genetics can answer the question in a roundabout way. Human DNA sequences today may shed light on our ancestors because some portions of the human genome change very slowly. One of these is the Y chromosome. Women carry two X chromosomes, while men have one X and one Y. The X and Y cannot exchange DNA like the 22 pairs of non-sex chromosomes in humans or the paired X chromosomes in women. As a result, a man should have a carbon copy of the Y chromosome of his father, grandfather and so on. But sometimes a harmless mutation, a misspelling in the genetic code, occurs. The mutation will be passed on to all the man’s male descendants. If millions of men have the same mutation, then they all share a distant paternal ancestor.

Underhill studies pairs of mutations on the Y chromosome in current populations. He combines data about the geographic distribution of the mutations with information about when the mutations arose to trace historical migrations.

While reading a previous paper on Y-chromosome mutations in Science that Underhill co-authored, King thought the geographic distribution of some pairs of mutations paralleled that of Neolithic decorative ceramics. King, a psychiatrist with a PhD in mathematics and a deep interest in art history, called Underhill and suggested they compare the two sets of data.

Critics argue that the contemporary gene pool does not reflect what happened thousands of years ago because people have moved around too much since then. Many also see genetics as an entirely separate line of investigation from archaeological work. Researchers had compared genetic studies to language evolution, but no one had attempted to link genetics and material culture. Underhill agreed to undertake the analysis with King.

The Science paper Underhill co-authored described the Y chromosomes of more than 1,000 men in 25 different Middle Eastern and European geographic regions. They found that the frequency of four pairs of mutations was highest in the Middle East but also significant in eastern and southern Europe. While it is likely that all the mutations studied originated prior to the Neolithic period, the distribution suggested a westward migration.

The researchers took the distribution of the four pairs of Y-chromosome mutations found to originate in the Middle East and compared it to the regions where certain decorated ceramics have been found in Neolithic sites. They focused on figurines and pottery with painted geometric and abstract designs. Most of the figurines are female; researchers have speculated that they were used for magic or religious purposes, as amulets or charms, or even as dolls for children, King said.

The researchers found a strong correlation in their study between the Y-chromosome mutations and the presence of certain artifacts. Nonetheless, Underhill remains cautious. "No gene on the Y chromosome is going to program you to make pottery," he said. Instead, the Y-chromosome mutation pairs used in the study are simply population markers that in this case were compared to ceramics. The same mutations could be compared to many different types of artifacts.

King and Underhill hope that archaeologists will follow them in trying to blend these two lines of historical evidence. They are continuing to gather genetic data from areas in Greece near Neolithic archaeological sites and in western Turkey, which researchers believe to be the jumping-off point for Neolithic migration

Ruthann Richter | EurekAlert!
Further information:
http://mednews.stanford.edu.

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>