Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New simulation shows 9/11 plane crash with scientific detail

11.09.2002


Engineers, computer scientists and graphics technology experts at Purdue University have created the first publicly available simulation that uses scientific principles to study in detail what theoretically happened when the Boeing 757 crashed into the Pentagon last Sept. 11.


This image was taken from a simulation, believed to be the first of its kind, that merges a realistic-looking visualization with a precise, physics-based animation that shows what likely happened to the Pentagon’s steel-reinforced concrete structure when it was hit by the Boeing 757 last Sept. 11. The simulation, created by a team of engineers, computer scientists and graphics technology experts at Purdue University, could be used as a tool for designing critical buildings – such as hospitals or fire stations – to withstand terrorist attacks. This image shows a representation of the aircraft just before impact. (Departments of Computer Sciences and Computer Graphics Technology, Purdue University)


This image, showing a representation of the aircraft shortly after impact, is another realistic-looking graphic from the same simulation. The simulation shows what likely happened to the Pentagon’s steel-reinforced concrete structure when it was hit by the Boeing 757 last Sept. 11. (Departments of Computer Sciences and Computer Graphics Technology, Purdue University)



Researchers said the simulation could be used as a tool for designing critical buildings – such as hospitals and fire stations – to withstand terrorist attacks.

The simulation merges a realistic-looking visualization of the airliner approaching the building with a technical, science-based animation of the plane crashing into the structure.


"This is going to be a tremendous asset," said Mete Sozen, Purdue’s Kettelhut Distinguished Professor of Structural Engineering. "Eventually, I hope this will be expanded into a model that we can use to help design structures to resist severe impact loads.

"Using this simulation I can do the so-called ’what-if’ study, testing hypothetical scenarios before actually building a structure."

The simulation can be recorded on a DVD and played on an ordinary personal computer.

The software tool is unusual because it uses principles of physics to simulate how a plane’s huge mass of fuel and cargo impacts a building. The plane’s structure caused relatively little damage, and the explosion and fire that resulted from the crash also are not likely to have been dominant factors in the disaster, Sozen said.

The model indicates the most critical effects were from the mass moving at high velocity.

"At that speed, the plane itself is like a sausage skin," Sozen said. "It doesn’t have much strength and virtually crumbles on impact."

But the combined mass of everything inside the plane – particularly the large amount of fuel onboard – can be likened to a huge river crashing into the building.

The simulation deals specifically with steel-reinforced concrete buildings, as opposed to skyscrapers like the World Trade Center’s twin towers, in which structural steel provided the required strength and stiffness. Reinforced concrete is inherently fire resistant, unlike structural steel, which is vulnerable to fire and must undergo special fireproofing.

"Because the structural skeleton of the Pentagon had a high level of toughness, it was able to absorb much of the kinetic energy from the impact," said Christoph M. Hoffmann, a professor in the Department of Computer Sciences and at Purdue’s Computing Research Institute.

Sozen created a mathematical model of reinforced concrete columns. The model was then used as a starting point to produce the simulation.

Hoffmann turned Sozen’s model into the simulation by representing the plane and its mass as a mesh of hundreds of thousands of "finite elements," or small squares containing specific physical characteristics.

"What we do is simulate the physics of phenomena and then we visualize what we have calculated from scientific principles as a plausible explanation of what really happened," Hoffmann said. "We hope that through such simulations we can learn from this tragic event how to protect better the lives of our citizens and the civil infrastructure of the nation."

The simulation may be the first of its kind for merging realistic-looking animation with scientifically rigorous computations.

"Most of the computer-simulated crashes you see in movies or on TV are not realistic from the point of view of physics," said Voicu Popescu, an assistant professor of computer science. "They are designed to be spectacular rather than realistic. What hasn’t been done much, or, to our knowledge hasn’t been done at all, is to create a visualization that looks realistic in the sense that you would recognize the Pentagon and the plane and is, at the same time, true to physics."

The mesh of finite elements in the model require that millions of calculations be solved for every second of simulation. Creating only one-tenth of a second of simulation took about 95 hours of computation time on a supercomputer. Researchers originally used a bank of computers and later worked closely with Purdue’s information technology staff to harness IBM supercomputers at Purdue and Indiana University.

"The majority of the work had to do with producing the right models and then setting up the particular mesh so that we could work out accurately how this scenario unfolded," Hoffmann said.

In the simulation, the plane crashes into the building’s concrete support columns, which were reinforced with steel bars. In this simulation the columns were assumed to be "spirally reinforced," a technique popular in the 1940s in which steel bars were wound around columns in a helical shape. The coiled steel provided added strength to the columns and probably is responsible for saving many lives, Sozen said.

The simulation might be especially useful for engineers who are trying to design reinforced concrete structures that better withstand terrorist attacks or accidents involving aircraft crashes.

"Our focus was on modeling the impact effect of the liquid fuel in the tanks of the aircraft – the amount of energy transferred to the building’s structural load-carrying system, which is mainly the reinforced concrete columns, and the condition of those columns after the impact," said Sami Kilic, a civil engineering research associate who specializes in earthquake engineering.

A major challenge has been learning how to combine commercially available software with the special models needed to simulate an airliner hitting a building, Kilic said.

The Purdue team used commercial software that is normally used by auto manufacturers to simulate car crashes. But adapting the software to simulate the plane crash and then combining the realistic-looking graphics with scientific simulation has been especially difficult, Kilic said.

"Integrating these two animations is uncommon," he said. "We are discovering a new territory. We had some interaction with aeronautical engineers, and they had never heard of this kind of a simulation, with an aircraft hitting a building.

"This kind of a structure/aircraft interaction is not done commercially."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Mete Sozen, (765) 494-2187, sozen@purdue.edu

Christoph M. Hoffmann, (765) 494-6185, cmh@cs.purdue.edu

Voicu Popescu, (765) 496-7347, popescu@cs.purdue.edu

Sami Kilic, (765) 496-6657, skilic@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>