Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mathematics of a clean swimming pool

31.07.2002


Without adequate cleaning regimes swimming pools can become a health hazard.


Now water experts and mathematicians are ‘pooling’ their expertise to anticipate the factors that lead to an unhealthy swimming environment.

The researchers are testing different water treatments using a unique pilot pool, donated by an advisory body, that simulates the chemical environment of a municipal swimming pool. Significantly this research technique could also be applied to other water recycling systems, such as those used in industry.

The research is being coordinated by Dr Simon Judd at the School of Water Sciences at the Cranfield University campus in Bedfordshire with funding from the Swindon based Engineering and Physical Sciences Research Council.



Mathematicians will then use the information gathered from the pool experiments to develop models to predict the production of unwanted by-products that lead to unhealthy conditions. The information can include details of the number of bathers in a given sized pool, the concentration of organic compounds, the pH of the water and the concentration of disinfectant. This work is being carried out by the Department of Engineering Mathematics at the University of Bristol.

“Ultimately the idea would be to develop an accurate model to represent the chemical processes that are occurring in the pool,” says Dr Judd. “This would provide a flexible tool to look at the effect of various regimes to manage the water quality and enable us to identify the optimal conditions for operating the system. For example what would be the effect of reducing the organic loading by insisting that bathers wash themselves before swimming, or would intermittent dosing of disinfectant prove sufficient?”

The work has implications beyond the management of swimming pools. “The same basic parameters apply to other water treatment systems, such as industrial water recycling,” says Dr Judd. “The same issues of pollutant loading, treatment dosages, the formation of by-products are all relevant.”

Jane Reck | alfa

More articles from Interdisciplinary Research:

nachricht A Dream for the Future: “Flying with Green Fuel"
25.07.2018 | Universität Bremen

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>