Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The mathematics of a clean swimming pool

31.07.2002


Without adequate cleaning regimes swimming pools can become a health hazard.


Now water experts and mathematicians are ‘pooling’ their expertise to anticipate the factors that lead to an unhealthy swimming environment.

The researchers are testing different water treatments using a unique pilot pool, donated by an advisory body, that simulates the chemical environment of a municipal swimming pool. Significantly this research technique could also be applied to other water recycling systems, such as those used in industry.

The research is being coordinated by Dr Simon Judd at the School of Water Sciences at the Cranfield University campus in Bedfordshire with funding from the Swindon based Engineering and Physical Sciences Research Council.



Mathematicians will then use the information gathered from the pool experiments to develop models to predict the production of unwanted by-products that lead to unhealthy conditions. The information can include details of the number of bathers in a given sized pool, the concentration of organic compounds, the pH of the water and the concentration of disinfectant. This work is being carried out by the Department of Engineering Mathematics at the University of Bristol.

“Ultimately the idea would be to develop an accurate model to represent the chemical processes that are occurring in the pool,” says Dr Judd. “This would provide a flexible tool to look at the effect of various regimes to manage the water quality and enable us to identify the optimal conditions for operating the system. For example what would be the effect of reducing the organic loading by insisting that bathers wash themselves before swimming, or would intermittent dosing of disinfectant prove sufficient?”

The work has implications beyond the management of swimming pools. “The same basic parameters apply to other water treatment systems, such as industrial water recycling,” says Dr Judd. “The same issues of pollutant loading, treatment dosages, the formation of by-products are all relevant.”

Jane Reck | alfa

More articles from Interdisciplinary Research:

nachricht Stanford researchers create a wireless, battery-free, biodegradable blood flow sensor
09.01.2019 | Stanford University

nachricht Description of rotating molecules made easy
21.12.2018 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>