Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create New Material With Varying Densities of Gold Nanoparticles

19.07.2002


Material could be used to make better filters, more efficient sensors, and faster catalysts

For the first time, scientists have created a material with a gradient of gold nanoparticles on a silica covered silicon surface using a molecular template. The material, which was developed at North Carolina State University (NCSU) and tested at theNational Synchrotron Light Source(NSLS) at the U.S. Department of Energy’s Brookhaven National Laboratory, provides the first evidence that nanoparticles — each about one thousand times smaller than the diameter of a human hair — can form a gradient of decreasing concentration along a surface. A description of the material appears as the cover story in the July 23 issue of Langmuir.

“This material promises to be the first in a series with many applications in electronics, chemistry, and the life sciences,” said Rajendra Bhat, a Ph.D. student from North Carolina State University (NCSU) and the lead author of the study. Bhat worked with Jan Genzer, a chemical engineering professor at NCSU, and Daniel Fischer, a physicist from the U.S. Department of Commerce’s National Institute of Standards and Technology (NIST).



"Top: Images of gold nanoparticles attached to the silica surface at different distances from the most populated end of the substrate. As the distance increases, the number of particles decreases, revealing a particle gradient. Bottom: Simplified representation of the material showing particles in decreasing concentration along the surface. "



To build the material, the scientists first prepared a very thin layer of organosilanes, sticky molecules with a head and a tail, on a rectangular surface of silica. The head glues to the surface, while the tail sticks out, acting like a hook waiting for a gold nanoparticle to attach to it, explained Genzer, leader of the NCSU team. The molecules, emitted vertically in the form of a vapor by a source close to one side of the surface, slowly fell on it with decreasing concentration as the distance from the source increased, thus creating a gradient to serve as a molecular template.

The next step was to dip the material in a solution containing the gold nanoparticles, each of which was coated with a negatively charged chemical. In the solution, the tails of the organosilane molecules took on a positive charge, so the negatively charged gold particles attached to the oppositely charged tails underneath.

To visualize the gradient of gold particles, Bhat and his colleagues used an atomic force microscope, in which a tiny needle moves along the surface, following its bumps and valleys to reveal its topography. To look at the gradient of the organosilane molecules, the scientists used a technique called near-edge x-ray absorption fine structure (NEXAFS). In NEXAFS, extremely intense x-ray light is sent toward the material, and the electrons emitted by the material and collected with a sensitive detector provide information about the concentration of the organosilane molecules on the surface.



“We needed to confirm that both the gold particles and the sticky groups followed the same underlying gradient template,” Bhat said. “The results from both techniques were expected to coincide if the particles were attaching to the underlying layer of sticky molecules. Our results show exactly that.”


“The distinguishing feature of our approach is that the particles follow a pre-designed chemical template provided by the organosilane sticky groups,” said Genzer. “The ability to manipulate the underlying template allows us to prepare gradient structures of nanoparticles with varying characteristics.”



The main advantage of the gradient structure is that large numbers of structures can be combined on a single substrate and used for high-throughput processing. It might, for example, save time for chemists testing clusters of nanoparticles used as catalysts — chemicals actively sought by the chemical industry to create new, less polluting sources of energy. “Clusters made of different numbers of nanoparticles could be put on a single surface, and scientists could test this surface only once in a chemical reaction, instead of having to run each cluster separately through the reaction,” Fischer said. The material could also be used as a sensor to detect species that have specific affinities for nanoparticles, or as a filter to select particles of given sizes.

Bhat and his colleagues are now exploring the properties of similar materials, with different “sticky” substances and nanoparticles. “This research is so new that we are still thinking of potential applications for these materials,” he said.

This research was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, the National Science Foundation, and the Department of Commerce.

 

The U.S. Department of Energy’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.



Patrice Pages | NewsRelease

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>