Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Create New Material With Varying Densities of Gold Nanoparticles

19.07.2002


Material could be used to make better filters, more efficient sensors, and faster catalysts

For the first time, scientists have created a material with a gradient of gold nanoparticles on a silica covered silicon surface using a molecular template. The material, which was developed at North Carolina State University (NCSU) and tested at theNational Synchrotron Light Source(NSLS) at the U.S. Department of Energy’s Brookhaven National Laboratory, provides the first evidence that nanoparticles — each about one thousand times smaller than the diameter of a human hair — can form a gradient of decreasing concentration along a surface. A description of the material appears as the cover story in the July 23 issue of Langmuir.

“This material promises to be the first in a series with many applications in electronics, chemistry, and the life sciences,” said Rajendra Bhat, a Ph.D. student from North Carolina State University (NCSU) and the lead author of the study. Bhat worked with Jan Genzer, a chemical engineering professor at NCSU, and Daniel Fischer, a physicist from the U.S. Department of Commerce’s National Institute of Standards and Technology (NIST).



"Top: Images of gold nanoparticles attached to the silica surface at different distances from the most populated end of the substrate. As the distance increases, the number of particles decreases, revealing a particle gradient. Bottom: Simplified representation of the material showing particles in decreasing concentration along the surface. "



To build the material, the scientists first prepared a very thin layer of organosilanes, sticky molecules with a head and a tail, on a rectangular surface of silica. The head glues to the surface, while the tail sticks out, acting like a hook waiting for a gold nanoparticle to attach to it, explained Genzer, leader of the NCSU team. The molecules, emitted vertically in the form of a vapor by a source close to one side of the surface, slowly fell on it with decreasing concentration as the distance from the source increased, thus creating a gradient to serve as a molecular template.

The next step was to dip the material in a solution containing the gold nanoparticles, each of which was coated with a negatively charged chemical. In the solution, the tails of the organosilane molecules took on a positive charge, so the negatively charged gold particles attached to the oppositely charged tails underneath.

To visualize the gradient of gold particles, Bhat and his colleagues used an atomic force microscope, in which a tiny needle moves along the surface, following its bumps and valleys to reveal its topography. To look at the gradient of the organosilane molecules, the scientists used a technique called near-edge x-ray absorption fine structure (NEXAFS). In NEXAFS, extremely intense x-ray light is sent toward the material, and the electrons emitted by the material and collected with a sensitive detector provide information about the concentration of the organosilane molecules on the surface.



“We needed to confirm that both the gold particles and the sticky groups followed the same underlying gradient template,” Bhat said. “The results from both techniques were expected to coincide if the particles were attaching to the underlying layer of sticky molecules. Our results show exactly that.”


“The distinguishing feature of our approach is that the particles follow a pre-designed chemical template provided by the organosilane sticky groups,” said Genzer. “The ability to manipulate the underlying template allows us to prepare gradient structures of nanoparticles with varying characteristics.”



The main advantage of the gradient structure is that large numbers of structures can be combined on a single substrate and used for high-throughput processing. It might, for example, save time for chemists testing clusters of nanoparticles used as catalysts — chemicals actively sought by the chemical industry to create new, less polluting sources of energy. “Clusters made of different numbers of nanoparticles could be put on a single surface, and scientists could test this surface only once in a chemical reaction, instead of having to run each cluster separately through the reaction,” Fischer said. The material could also be used as a sensor to detect species that have specific affinities for nanoparticles, or as a filter to select particles of given sizes.

Bhat and his colleagues are now exploring the properties of similar materials, with different “sticky” substances and nanoparticles. “This research is so new that we are still thinking of potential applications for these materials,” he said.

This research was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, the National Science Foundation, and the Department of Commerce.

 

The U.S. Department of Energy’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies. Brookhaven also builds and operates major facilities available to university, industrial, and government scientists. The Laboratory is managed by Brookhaven Science Associates, a limited liability company founded by Stony Brook University and Battelle, a nonprofit applied science and technology organization.



Patrice Pages | NewsRelease

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>