Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU study expands understanding of bacterial communities for wastewater treatment system

14.05.2019

A University of Oklahoma-led interdisciplinary global study expands the understanding of activated sludge microbiomes for next-generation wastewater treatment and reuse systems enhanced by microbiome engineering. Wastewater treatment and reuse are critical to global health and sustaining a world population predicted to reach 10 billion by 2050.

"In May 2014, we established a Global Water Microbiome Consortium as a way to promote international collaboration and communication on global research and education for water microbiome," said Jizhong Zhou, OU director, Institute for Environmental Genomics; George Lynn Cross Research Professor, OU College of Arts and Sciences; adjunct professor, Gallogly College of Engineering; adjunct senior scientist, Lawrence Berkeley National Laboratory; and adjunct professor, Tsinghua University.


An OU study expands the understanding of activated sludge microbiomes for next-generation wastewater treatment and reuse systems enhanced by microbiome engineering.

Credit: University of Oklahoma

"Different from several other global initiatives using a bottom-up approach to solicit microbial samples, the consortium used top-down sampling strategy to target the microbiomes of activated sludge processes in municipal wastewater treatment plants that represent a vital element of the infrastructure for modern urban societies.

The campaign involved 111 investigators who sampled 269 wastewater treatment plants in 86 cities in 23 countries on six continents," said Zhou.

This study is novel in several ways:

(1) it reports the first comprehensive, highly coordinated effort to examine the global diversity and biogeography of the activated sludge microbiome;

(2) it documents a highly diverse activated microbiome, containing up to one billion microbial phylotypes comprise of novel species;

(3) it identifies the core global taxa of activated sludge microbial communities that are linked to activated sludge performance;

(4) it reveals that the activated sludge microbiome is distinct from microbiomes in other habitats; and

(5) it provides an understanding of the mechanisms driving the composition and functions of the activated sludge communities.

Each day wastewater is treated by an activated sludge process in municipal wastewater treatment plants and returned to the environment for use. This treatment process has been used for over a century and today represents the largest application of biotechnology in the world, yet there has been no effort to map the global activated sludge microbiome. Developing a fundamental understanding of the biodiversity of the activated sludge microbiome in relationship to performance is critical to advancing and optimizing this key technology for maintaining environmental health.

"This unprecedented global sampling effort yielded new insight into the microbiology of activated sludge," said Bruce Rittmann, director, Biodesign Swette Center for Environmental Biotechnology, Arizona State University. "Despite giant geographic differences, the microbial communities of activated sludge have a core of about 28 bacterial strains, which reflects the powerful and unique ecological selection of the activated sludge process."

"This expansive study is the first time that a systematic study of the hugely beneficial microbial communities involved in the biological treatment of daily wastewaters from communities around the world have been studied to understand their fundamental structure and function has been undertaken. It represents an important development in understanding and maintaining these crucial microbial communities," said Lisa Alvarez-Cohen, Fred and Claire Sauer Professor, University of California Berkeley, and adjunct senior scientist, Lawrence Berkeley National Laboratory.

###

A paper on this research, "Global Diversity and Biogeography of the Bacterial Communities in Wastewater Treatment Plants," has been published in Nature Microbiology. For more information about this study, please contact jzhou@ou.edu.

Media Contact

Jana Smith
jana.smith@ou.edu
405-325-1322

 @ouresearch

http://www.ou.edu 

Jana Smith | EurekAlert!
Further information:
https://bit.ly/2LG1gJF
http://dx.doi.org/10.1038/s41564-019-0426-5

More articles from Interdisciplinary Research:

nachricht How do muscle and tendon connections last a lifetime? Study in the fruit fly Drosophila
04.04.2019 | Westfälische Wilhelms-Universität Münster

nachricht The Internet of Things: TU Graz researchers increase the dependability of smart systems
18.02.2019 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

Im Focus: New teeth: Highly rigid – and ready for immediate use

Significantly improved glass ceramics

The demands placed on a dental prosthesis are high: it should look natural, endure accidental biting on cherry pits – and if possible, the patient should be...

Im Focus: Researchers take a step towards light-based, brain-like computing chip

Researchers from the Universities of Münster (Germany), Oxford and Exeter (both UK) have succeeded in developing a piece of hardware which could pave the way for creating computers which resemble the human brain. The scientists produced a chip containing a network of artificial neurons that works with light and can imitate the behaviour of neurons and their synapses. The network is able to “learn” information and use this as a basis for computing and recognizing patterns. As the system functions solely with light and not with electrons, it can process data many times faster than traditional systems. The study is published in “Nature”.

A technology that functions like a brain? In these times of artificial intelligence, this no longer seems so far-fetched - for example, when a mobile phone can...

Im Focus: First demonstration of antimatter wave interferometry

An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter.

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This...

Im Focus: Quantum sensor for photons

A photodetector converts light into an electrical signal, causing the light to be lost. Researchers led by Tracy Northup at the University of Innsbruck have now built a quantum sensor that can measure light particles non-destructively. It can be used to further investigate the quantum properties of light.

Physicist Tracy Northup is currently researching the development of quantum internet at the University of Innsbruck. The American citizen builds interfaces...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cause for variability in Arctic sea ice clarified

14.05.2019 | Earth Sciences

2D insulators with ferromagnetism are rare; researchers just identified a new one

14.05.2019 | Materials Sciences

Better microring sensors for optical applications

14.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>