Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017

An interdisciplinary team of scientists at the U.S. Naval Research Laboratory (NRL) has uncovered a direct link between sample quality and the degree of valley polarization in monolayer transition metal dichalcogenides (TMDs). In contrast with graphene, many monolayer TMDs are semiconductors and show promise for future applications in electronic and optoelectronic technologies.

In this sense, a 'valley' refers to the region in an electronic band structure where both electrons and holes are localized, and 'valley polarization' refers to the ratio of valley populations -- an important metric applied in valleytronics research.


Upper Panel: schematic of optical excitation in the K valley of WS2 monolayers. Lower Panel: Photoluminescence (PL) intensity map of a triangular monolayer island of WS2 and the associated valley polarization map demonstrate the clear inverse relationship. Each map covers a 46 x 43 micron area. The regions exhibiting smallest PL intensity and lowest quality are found at the center of the flake and radiate outward toward the three corners. These regions correspond to the highest valley polarization.

Credit: US Naval Research Laboratory

"A high degree of valley polarization has been theoretically predicted in TMDs yet experimental values are often low and vary widely," said Kathleen McCreary, Ph.D., lead author of the study. "It is extremely important to determine the origin of these variations in order to further our basic understanding of TMDs as well as advance the field of valleytronics."

Many of today's technologies (i.e. solid state lighting, transistors in computer chips, and batteries in cell phones) rely simply on the charge of the electron and how it moves through the material. However, in certain materials such as the monolayer TMDs, electrons can be selectively placed into a chosen electronic valley using optical excitation.

"The development of TMD materials and hybrid 2D/3D heterostructures promises enhanced functionality relevant to future Department of Defense missions," said Berend Jonker, Ph.D., principal investigator of the program. "These include ultra-low power electronics, non-volatile optical memory, and quantum computation applications in information processing and sensing."

The growing fields of spintronics and valleytronics aim to use the spin or valley population, rather than only charge, to store information and perform logic operations. Progress in these developing fields has attracted the attention of industry leaders, and has already resulted in products such as magnetic random access memory that improve upon the existing charge-based technologies.

The team focused on TMD monolayers such as WS2 and WSe2, which have high optical responsivity, and found that samples exhibiting low photoluminescence (PL) intensity exhibited a high degree of valley polarization. These findings suggest a means to engineer valley polarization via controlled introduction of defects and nonradiative recombination sites

"Truly understanding the reason for sample-to-sample variation is the first step towards valleytronic control," McCreary said. "In the near future, we may be able to accurately increase polarization by adding defect sites or reduce polarization by passivation of defects."

Results of this research are reported in the August 2017 edition of the American Chemical Society's Nano, The research team is comprised of Dr. Kathleen McCreary, Dr. Aubrey Hanbicki, and Dr. Berend Jonker from the NRL Materials Science and Technology Division; Dr. Marc Currie from the NRL Optical Sciences Division; and Dr. Hsun-Jen Chuang who holds an American Society for Engineering Education (ASEE) fellowship at NRL.

Media Contact

Daniel Parry
daniel.parry@nrl.navy.mil
202-767-2326

 @USNRL

http://www.nrl.navy.mil 

Daniel Parry | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>