Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel tactile display using computer-controlled surface adhesion

27.11.2019

A group of researchers at Osaka University developed a novel two-dimensional (2D) graphical tactile display to which one-dimensional (1D) adhesive information could be added by controlling adhesion of designated portions of the display surface. (Fig.1)

Their research results were presented at SIGGRAPH ASIA 2019 Emerging Technologies, which was held in Australia from November 18 through November 20, 2019. The research team received the BEST DEMO VOTED BY COMMITTEE AWARD.


The area under the index finger becomes sticky.

Credit: Osaka University

With conventional techniques, it was impossible to perform dynamic and interactive control by changing the shape or friction coefficient of an area on the surface of an electronic device, such as a paper-like screen, in order to enhance its operability. Thus, researchers have made efforts to present further information by using visual presentation that can also deliver other sensory (tactile) content.

In the entertainment industry, such as in video games, displays that give players a sense of temperature or shock have been proposed so that they can feel as if they were actually in the scene of a game. In particular, many haptic displays and element technologies that give players tactile feedback have been devised.

This group of researchers developed a display in which the sense of touch, i.e. a 1D "sticky" sensation, can be added to a 2D vision display. On their display is mounted a temperature sensitive adhesive sheet, a special polymer sheet whose adhesion (friction) can be changed by controlling the temperature of the display surface with a computer.

In order to present changes in adhesion in a range that does not bring a sense of discomfort to a user, the researchers used an adhesive sheet with a boundary temperature of 40°C. The sheet rapidly becomes sticky through heating to a temperature above 40°C, showing the largest adhesion of 2.6 [N/25mm] in the temperature range of 30°C ~ 48°C.

With this display, users can take in both visual and tactile information, something difficult to achieve through ordinary 2D displays. For example, one can feel a folder and learn its capacity by touching it while navigating the folder hierarchy, which can be preset to vary adhesion by folder capacity. It is also possible to impede the operability of a device to prevent users from carelessly swiping through content so that they can focus on sections containing important information, which are set to increased adhesion levels.

In addition, it is also possible to apply this technology to touchscreens for people with visual impairments and allow users who are looking at an image of a sticky object on the screen to feel the displayed object's stickiness as if they were actually touching the object in the image.

Associate Professor Itoh says, "This graphical tactile system allows users to get 'touch and feel' information that would be difficult to perceive on a visual display. We will consider applications to entertainment and digital signage to pursue its commercial viability."

###

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Saori Obayashi | EurekAlert!

Further reports about: adhesion economic impact sense of touch video games visual impairments

More articles from Interdisciplinary Research:

nachricht Carl Zeiss Foundation supports interdisciplinary atmospheric physics and computer science project at Mainz University
27.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht On the way to the optical cochlear implant
23.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>