Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nickel nanoparticles may contribute to lung cancer

24.08.2011
All the excitement about nanotechnology comes down to this: Structures of materials at the scale of billionths of a meter take on unusual properties.

Technologists often focus on the happier among these newfound capabilities, but new research by an interdisciplinary team of scientists at Brown University finds that nanoparticles of nickel activate a cellular pathway that contributes to cancer in human lung cells.

"Nanotechnology has tremendous potential and promise for many applications," said Agnes Kane, chair of the Department of Pathology and Laboratory Medicine in The Warren Alpert Medical School of Brown University. "But the lesson is that we have to learn to be able to design them more intelligently and, if we recognize the potential hazards, to take adequate precautions."

Kane is the senior author of the study published in advance online this month in the journal Toxicological Sciences.

Nickel nanoparticles had already been shown to be harmful, but not in terms of cancer. Kane and her team of pathologists, engineers and chemists found evidence that ions on the surface of the particles are released inside human epithelial lung cells to jumpstart a pathway called HIF-1 alpha. Normally the pathway helps trigger genes that support a cell in times of low oxygen supply, a problem called hypoxia, but it is also known to encourage tumor cell growth.

"Nickel exploits this pathway, in that it tricks the cell into thinking there's hypoxia but it's really a nickel ion that activates this pathway," said Kane, whose work is supported by a National Institues of Health Superfund Research Program Grant. "By activating this pathway it may give premalignant tumor cells a head start."

Size matters

The research team, led by postdoctoral research associate and first author Jodie Pietruska, exposed human lung cells to nanoscale particles of metallic nickel and nickel oxide, and larger microscale particles of metallic nickel. A key finding is that while the smaller particles set off the HIF-1 alpha pathway, the larger metallic nickel particles proved much less problematic.

In other words, getting down to the nanoscale made the metallic nickel particles more harmful and potentially cancer-causing. Kane said the reason might be that for the same amount of metal by mass, nanoscale particles expose much more surface area and that makes them much more chemically reactive than microscale particles.

Another important result from the work is data showing a big difference in how nickel nanoparticles and nickel oxide nanoparticles react with cells, Pietruska said. The nickel oxide particles are so lethal that the cells exposed to them died quickly, leaving no opportunity for cancer to develop. Metallic nickel particles, on the other hand, were less likely to kill the cells. That could allow the hypoxia pathway to lead to the cell becoming cancerous.

"What is concerning is the metallic nickel nanoparticles caused sustained activation but they were less cytotoxic," Pietruska said. "Obviously a dead cell can't be transformed."

Although Kane said the findings should raise clear concerns about handling nickel nanoparticles, for instance to prevent airborne exposure to them in manufacturing, they are not all that's needed to cause cancer. Cancer typically depends on a number of unfortunate changes, Kane said. Also, she said, the study looked at the short-term effects of nickel nanoparticle exposure in cells in a lab, rather than over the long term in a whole organism.

Still, in her lab Kane employs significant safeguards to keep researchers safe.

"We handle all these materials under biosafety level 2 containment conditions," she said. "I don't want anyone exposed. We're handling them as though they were an airborne carcinogen."

In addition to Kane and Pietruska, other authors on the paper are Ashley Smith, Kevin McNeil, and Anatoly Zhitkovich, a toxicologist; chemist Xinyuan Liu; and engineer Robert Hurt. Kane, Hurt, and Zhitkovich are associated with Brown's Institute for Molecular and Nanoscale Innovation.

David Orenstein | EurekAlert!
Further information:
http://www.brown.edu

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>