Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence on terrestrial and oceanic responses to climate change over last millennium

11.10.2016

Two sea bed loggings from the Alboran Sea have been analyzed at very high resolution and have allowed to reconstruct climate and oceanographic conditions as well as anthropogenic influence in the westernmost region of the Mediterranean Sea

A multidisciplinary research team in which the University of Granada (UGR) takes part has achieved a breakthrough on what we know about terrestrial and oceanic responses to climate variability over the last millennium, including the industrial period.


Two sea bed loggings from the Alboran Sea have been analyzed at very high resolution and have allowed to reconstruct climate and oceanographic conditions as well as anthropogenic influence in the westernmost region of the Mediterranean Sea over that period.

Credit: UGRdivulga

Two sea bed loggings retrieved from the Alboran Sea's basin and analyzed at very high resolution have allowed the reconstruction of climate and oceanographic conditions, as well as the identification of anthropogenic influence in the westernmost region of the Mediterranean Sea over that period.

Global warming, climate change and their effects on health and safety are probably the worst threats in mankind's history. Recent reports from the Intergovernmental Panel on Climate Change (IPCC 2007, 2014) have furnished scientific evidence such as that the observed rise in mean ground temperature all over the world from the beginning of the 20th century is probably due to anthropogenic influence.

Moreover, global mean concentration of carbon dioxide in the atmosphere has risen since the industrial revolution due to human activities. Said concentration has surpassed that found in ice cores over the last 800 000 years, too. In this regard, in January 2016 the NASA and the United States' NOAA (National Oceanic and Atmospheric Administration) revealed that global mean temperature in 2015 was the highest one since 1880, when we started to record it.

Reconstructions of the global ground temperature in the Northern Hemisphere over the last millennium show hotter conditions during the so called Medieval Climatic Anomaly (800-1300 A.C.) and cooler temperatures during the Little Ice Age (1300-1850 A.C.).

Natural climate variability

Climate models give us a coherent explanation of the progressive cooling over the last millennium due to a natural climate variability (solar cycle changes and volcanic eruptions). However, we can see that said global tendency has reverted during the 20th century. Climate models are not capable of simulating the fast warming observed during the last century without including human impact along with natural mechanisms of climate forcing.

With this in mind, a multidisciplinary team of researchers from Germany's Center for Biodiversity and Climate Research (Vanesa Nieto-Moreno), the University of Granada (Miguel Ortega-Huertas), Spain's CSIC (Francisca Martínez-Ruiz, David Gallego-Torres and Santiago Giralt), the Autonomous University of Barcelona (Jordi García-Orellana and Pere Masqué) and Holland's Institute for Marine Research (Jaap Sinninghe Damsté) has carried out a research on the reconstruction of climate and oceanographic conditions in the westernmost region of the Mediterranean Sea. For that purpose, they have used marine sediments retrieved from the Alboran Sea's basin.

The studied region is very interesting, since it's specially sensitive and vulnerable to anthropogenic and climate forcing due to it being a semi-closed basin located in a latitude affected by several climate types. Several organic and inorganic geochemical indicators have been integrated in the model for this research, thus deducing climate variables such as sea surface temperature, humidity, changes in vegetation cover, changes in sea currents and human impact.

Said indicators have shown consistent climate signals in the two sea bed loggings: essentially hot and dry climate conditions during the Medieval Climatic Anomaly, which switched to mostly cold and wet conditions during the Little Ice Age. The industrial period showed wetter conditions than during the Little Ice Age, and the second half of the 20th century has been characterized by an increasing aridity.

Climate variability in the Mediterranean region seems to be driven by variations in solar irradiation and changes in the North Atlantic Oscillation (NAO) during the last millennium. The NAO alternates a positive phase with a negative one. The positive phase is characterized by western winds, which are more intense and move storms towards northern Europe, which resulted in dry winters in the Mediterranean region and the north of Africa during the Medieval Climatic Anomaly and the second half of the 20th century.

In contrast, the negative phase is associated with opposite conditions during the Little Ice Age and the industrial period. Our records show that, during NAO prolonged negative phases (1450 and 1950 A.C.), there occurred a weakening of the thermohaline circulation and a reduction of "upwelling" events (emergence of colder, more nutrient-rich waters). Anthropogenic influence shows up in the unprecedented increase of temperature, progressive aridification and soil erosion, and an increase of polluting elements since the industrial period. On a broad scale, atmospheric circulation patterns, oceanic circulation patterns (the NAO and the Atlantic meridional overturning circulation), and variations in solar irradiance seem to have played a key role during the last millennium.

Results show that recent climate records in the westernmost region of the Mediterranean Sea are caused by natural forcing and anthropogenic influence. The main conclusions derived from this research have been recently published in a special volume of the Journal of the Geological Society of London about climate change during the Holocene.

Media Contact

Miguel Ortega Huertas
mortega@ugr.es
34-958-243-342

 @canalugr

http://www.ugr.es 

Miguel Ortega Huertas | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>