Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Myelin linked to speedy recovery of human visual system after tumor removal

11.12.2014

Understanding recovery process could have implications for many different injuries of the central nervous system

An interdisciplinary team of neuroscientists and neurosurgeons from the University of Rochester has used a new imaging technique to show how the human brain heals itself in just a few weeks following surgical removal of a brain tumor.


This is a human visual pathway, including the optic chiasm, tracts and radiations, revealed by MRI. This subject has a large pituitary tumor, in red, causing compression. These tumors caused by demyelination of the vision pathways and vision loss, but surgery to remove the tumor leads to remarkably rapid remyelination and vision recovery.

Credit: David A. Paul/University of Rochester School of Medicine

In a study featured on the cover of the current issue of the journal Science Translational Medicine, the team found that recovery of vision in patients with pituitary tumors is predicted by the integrity of myelin--the insulation that wraps around connections between neurons--in the optic nerves.

"Before the study, we weren't able to tell patients how much, if at all, they would recover their vision after surgery," explained David Paul, an M.D. candidate in the Department of Neurobiology and Anatomy, and first author of the study.

When pituitary tumors grow large, they can compress the optic chiasm, the intersection of the nerves that connect visual input from the eyes to the brain. Nerve compression can lead to vision loss, which usually improves after these tumors are surgically removed through the nose.

Paul and his colleagues used a technique called diffusion tensor imaging (DTI) to show how changes in a particular bundle of nerve fibers relate to vision changes in these patients.

"DTI measures how water spreads in tissue," explained Bradford Mahon, assistant professor in the Department Brain and Cognitive Sciences and the Department of Neurosurgery, and senior author of the study. "The myelin insulation normally prevents water from spreading within the nerves, which would cause the nerves to malfunction."

Paul describes myelin damage by analogy to an insulated copper cable. In the human brain, DTI can measure the "leakiness of the insulation," or how well myelin constrains the flow of water in brain tissue.

One DTI-based measurement, called radial diffusivity, can be used as an indicator of myelin insulation; an increase in this measure means there is less insulation to restrict the movement of water within a nerve. In their study, the researchers found that inadequate insulation resulted in poorer visual ability in patients.

Paul said this particular patient population is unique because unlike other diseases such as stroke, trauma or multiple sclerosis, these patients have a problem that can be treated by surgery and the effect of the tumor on the brain is the same every time. Every pituitary tumor that grows large enough will compress the optic chiasm in more or less the same place, and removal of the tumor is often followed by a recovery of visual abilities.

"These patients grant us a unique opportunity to understand human brain repair because the surgery is minimally invasive and patients recover very quickly after surgery," said Edward Vates, director of the Pituitary Program in the Department of Neurosurgery at the University of Rochester Medical Center, and co-author of the study.

The measurements established in the study provide a new way to measure the structural integrity of nerve fibers, and may ultimately be applicable across the full range of brain diseases and injuries.

"There's a lot of variability in how people recover from brain injuries," said Mahon. "Anything we can learn about patients who go on to make a good recovery may help us to promote recovery from brain injury of any cause." he adds that the visual system is the best understood circuitry in the human brain, and his lab has developed very precise ways of studying vision before and after surgery.

"If we can develop our prognostic methods in the context of the early visual pathway, then we can apply the same types of models to more complex systems in the brain, like language recovery after a stroke," said Mahon.

"This kind of research will create novel treatments to fix broken nervous systems," said Bradford Berk, director of the new Rochester Neurorestorative Institute. "Harnessing new technologies to help us understand how the brain repairs itself and restores function, and how we can accelerate that process will be one of the keys to restoring neurological function in a wide range of conditions, such as multiple sclerosis, stroke, and traumatic brain injury."

Additional researchers on the study include Elon Gaffin-Cahn, Eric B. Hintz, Giscard J. Adeclat, and Zoë R. Williams from the University of Rochester/University of Rochester School of Medicine, and Tong Zhu from the University of Michigan Medical Center.

The National Institute of Neurological Disorders and Stroke and the National Eye Institute supported the research.

About the University of Rochester

The University of Rochester is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by its Eastman School of Music, Simon Business School, Warner School of Education, Laboratory for Laser Energetics, School of Medicine and Dentistry, School of Nursing, Eastman Institute for Oral Health, and the Memorial Art Gallery.

Monique Patenaude | EurekAlert!

Further reports about: Medicine Myelin STROKE human brain multiple sclerosis nerves tumors visual system

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>