Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

03.07.2019

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus electricity from wind power plants. However, the platinum used in fuel cells is rare and extremely expensive, which has been a limiting factor in applications up to now.


40-atom platinum nanoparticles should have the optimal catalytic effect in fuel cells. Measurements at the TUM's Catalysis Research Center confirmed the prognosis.

Image: Batyr Garlyyev / TUM


The first authors of the project in their laboratory at the Catalysis Research Center (CRC) of the Technical University of Munich (TUM): Dr. Batyr Garlyyev, Kathrin Kratzl and Marlon Rück(f.l.t.r.)

Image: Astrid Eckert / TUM

A research team at the Technical University of Munich (TUM) led by Roland Fischer, Professor for Inorganic and Organometallic Chemistry, Aliaksandr Bandarenka, Physics of Energy Conversion and Storage and Alessio Gagliardi, Professor for Simulation of Nanosystems for Energy Conversion, has now optimized the size of the platinum particles to such a degree that the particles perform at levels twice as high as the best processes commercially available today.

Ideal: A platinum egg only one nanometer long

In fuel cells, hydrogen reacts with oxygen to produce water, generating electricity in the process. Sophisticated catalysts at the electrodes are required in order to optimize this conversion. Platinum plays a central role in the oxygen-reduction reaction.

Searching for an ideal solution, the team created a computer model of the complete system. The central question: How small can a cluster of platinum atoms be and still have a highly active catalytic effect? "It turns out that there are certain optimum sizes for platinum stacks," explains Fischer.

Particles measuring about one nanometer and containing approximately 40 platinum atoms are ideal. "Platinum catalysts of this order of size have a small volume but a large number of highly active spots, resulting in high mass activity," says Bandarenka.

Interdisciplinary collaboration

Interdisciplinary collaboration at the Catalysis Research Center (CRC) was an important factor in the research team's results. Combining theoretical capabilities in modelling, joint discussions and physical and chemical knowledge gained from experiments ultimately resulted in a model showing how catalysts can be designed with the ideal form, size and size distribution of the components involved.

In addition, the CRC also has the expertise needed to create and experimentally test the calculated platinum nano-catalysts. "This takes a lot in terms of the art of inorganic synthesis," says Kathrin Kratzl, together with Batyr Garlyyev and Marlon Rück, one of three lead authors of the study.

Twice as effective as the best conventional catalyst

The experiment exactly confirmed the theoretical predictions. "Our catalyst is twice as effective as the best conventional catalyst on the market," says Garlyyev, adding that this is still not adequate for commercial applications, since the current 50 percent reduction of the amount of platinum would have to increase to 80 percent.

In addition to spherical nanoparticles, the researchers hope for even higher catalytic activity from significantly more complex shapes. And the computer models established in the partnership are ideal for this kind of modelling. "Nevertheless, more complex shapes require more complex synthesis methods," says Bandarenka. This will make computational and experimental studies more and more important in the future.

Further information:

The work was supported by the German Research Foundation (DFG) as part of the International Graduate School of Science and Engineering of the Technical University of Munich (TUM), the Czech Republic's Ministry for Youth, Education and Sports and the Central European Institute of Technology (CEITEC) in Brno (Czech Republic).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Roland A. Fischer
Director of the Catalysis Research Center (CRC)
Chair for Inorganic and Organometallic Chemistry
Technical University of Munich (TUM)
Ernst-Otto-Fischer-Straße 1, 85748 Garching, 
Tel.: +" 89 289 13080 – E-mail: roland.fischer@tum.de
Web: https://www.department.ch.tum.de/amc/home/

Prof. Dr. Aliaksandr S. Bandarenka
Physics of Energy Conversion and Storage
Technical University of Munich (TUM)
James-Franck-Straße 1, 85748 Garching
Tel.: +" 89 289 12531 – E-mail: bandarenka@ph.tum.de
Web: https://www.groups.ph.tum.de/energy/ecs/

Originalpublikation:

Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction
Batyr Garlyyev, Kathrin Kratzl, Marlon Rück, Jan Michalicka, Johannes Fichtner, Jan M. Macak, Tim Kratky, Sebastian Günther, Mirza Cokoja, Aliaksandr S. Bandarenka, Alessio Gagliardi and Roland A. Fischer
Angewandte Chemie May 3, 2019 – DOI: 10.1002/anie.20190492
https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201904492

Weitere Informationen:

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35554/ Link to the press release

Dr. Ulrich Marsch | Technische Universität München

Further reports about: CRC Energy Conversion TUM catalysts fuel cell catalysts platinum platinum atoms

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

Im Focus: Experimental physicists redefine ultrafast, coherent magnetism

For the first time ever, experimental physicists have been able to influence the magnetic moment of materials in sync with their electronic properties. The coupled optical and magnetic excitation within one femtosecond corresponds to an acceleration by a factor of 200 and is the fastest magnetic phenomenon that has ever been observed.

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Puzzling on a quantum chessboard

10.07.2019 | Physics and Astronomy

Fraunhofer WKI develops sustainable sandwich elements made from wood foam and textile-reinforced

10.07.2019 | Materials Sciences

Could vacuum physics be revealed by laser-driven microbubble?

10.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>