Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic nanopropellers deliver genetic material to cells


An interdisciplinary team of scientists from Stuttgart, Heidelberg, and London developed miniature magnetic nanopropellers that can deliver genetic material to cells. They used a magnetic material that outperforms the strongest known micromagnets, yet is chemically stable, non-toxic and biologically compatible. Such new nanopropellers hold great potential for biomedical applications and minimally invasive surgeries of the future.

Scientists from the Micro Nano and Molecular Systems Lab and the Modern Magnetic Systems Department at the Max Planck Institute for Intelligent Systems (MPI-IS) have succeeded in developing hard-magnetic nanomagnets that could one day enable new procedures in medicine and smaller devices in minimally invasive surgeries.

Two micrometer long and 500 Nanometer wide iron-platinum nanopropellers (left) enable genetic modification of cells, which then start expressing green fluorescing protein (right).

MPI für Intelligente Systeme

Using an iron platinum alloy, the researchers fabricated drill-shaped nanopropellers that are the size of a bacterium. In collaboration with scientists from the Francis Crick Institute, a biomedical research centre in London, and the Max Planck Institute for Medical Research in Heidelberg, the researchers showed that the magnetic nanopropellers are fully biocompatible, i.e. have no adverse effects on cells, and can deliver genetic material.

“The fantastical sounding idea that magnetically steered nanopropellers could one day enable the precise targeting and delivery of genes or drugs, holds great potential in medicine. We just came one small step closer to its realization,” says Peer Fischer, who heads the Micro Nano and Molecular Systems Lab and is a pioneer in the research field of nanopropellers.

Major challenges to using magnetic nanoparticles in biomedicine are that some commonly used magnetic materials exhibit unacceptably high toxicity (nickel, cobalt), others are difficult to fabricate (zinc ferrite), exhibit low chemical stability (iron corrodes) or have very weak magnetic moments (iron oxides). Additionally, commercially popular neodymium iron boron (NdFeB) supermagnets cannot be fabricated or used at very small scales thus far. Hence, finding a perfect material for this application is very challenging.

The team from the Micro Nano and Molecular Systems Lab overcame these restrictions by fabricating a new kind of magnetic nanopropeller. The Stuttgart scientists succeeded in growing nanostructures with magnetic properties that outperform the strongest known micromagnets (NdFeB), yet are chemically stable and biocompatible. These new nanopropellers are based on the iron platinum "L10" alloy, and are very promising because they combine everything real-world applications would require for magnetic targeting.

These excellent magnetic properties of iron platinum materials were previously achieved by the Modern Magnetic Systems Department at the MPI-IS, which is led by Gisela Schütz. “We succeeded in producing FePt nanomagnets that are about 50 % stronger than the world’s best neodymium compounds,” says Schütz.

Teaming up with the Micro Nano and Molecular Systems Lab, they developed a fabrication method for FePt nanopropellers using the specialized high-vacuum nanofabrication method "Glancing Angle Deposition" (GLAD) followed by an annealing step at close to 700 degrees. As with previous projects, GLAD enabled the simultaneous fabrication of billions of nanorobots in just a few hours, making this an easily scalable process.

With the support of biologists Maximiliano Gutierrez and Claudio Bussi from the Francis Crick Institute and bioengineer Andrew Holle from the Max Planck Institute for Medical Research, the team then showed that the non-toxic propellers enable active gene delivery.

They coated the propellers with DNA coding for green fluorescent protein. The propellers transported the DNA inside lung carcinoma cells which then started emitting green light. The researchers were able to precisely steer propellers through the cell media surrounding the cells.

Due to the hard-magnetic properties, which rival those of strong NdFeB micromagnets, the propellers are the fastest ever created in the Micro Nano and Molecular Systems Lab and reach speeds of 13 propeller lengths per second.

Vincent Kadiri is the first author of the highly interdisciplinary research project “Biocompatible magnetic micro- and nanodevices: Fabrication of FePt nanopropellers and cell transfection”, which was published in Advanced Materials on 6th May 2020. He expects that iron-platinum will also be adopted in the fabrication of other micro and nanodevices.

“I am very happy that we succeeded in constructing biocompatible nanopropellers from FePt that outperform what has so far been used in the field. It will be exciting to see the new applications this will enable.” FePt shows great potential for use in micro-robotics and a diverse range of biomedical applications. Maximiliano Gutierrez, who studies the dangerous tuberculosis pathogen, adds: “Biocompatible nanopropellers could represent a very smart strategy to deliver antibiotics and tackle the problem of antimicrobial resistance.”

Wissenschaftliche Ansprechpartner:

Vincent Mauricio Kadiri
Micro, Nano, and Molecular Systems


Weitere Informationen:

Linda Behringer | Max-Planck-Institut für Intelligente Systeme

Further reports about: FePt Micro Nano Nanomagnets biocompatible genetic material nanopropellers neodymium platinum

More articles from Interdisciplinary Research:

nachricht Carl Zeiss Foundation supports interdisciplinary atmospheric physics and computer science project at Mainz University
27.07.2020 | Johannes Gutenberg-Universität Mainz

nachricht On the way to the optical cochlear implant
23.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>