Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lipoprotein nanoplatelets shed new light on biological molecules and cells

06.01.2016

An interdisciplinary research team from the University of Illinois at Urbana-Champaign has developed a new material composite derived from quantum dots. These lipoprotein nanoplatelets are rapidly taken up by cells and retain their fluorescence, making them particularly well-suited for imaging cells and understanding disease mechanisms.

"Quantum dots are being widely investigated due to their unique physical, optical, and electronic properties," explained Andrew M. Smith, an assistant professor of bioengineering at Illinois. "Their most important feature is bright, stable light emission that can be tuned across a broad range of colors. This has made them useful for diverse applications as imaging agents and molecular probes in cells and tissues and as light-emitting components of LEDs and TVs."


A new composite material has been made by entrapping crystalline sheets called nanoplatelets into lipoprotein nanoparticles. These lipoprotein nanoplatelets are brightly fluorescent and enter cells rapidly.

Credit: Sung Jun Lim, University of Illinois

"These studies are the first example of flat quantum dots, called nanoplatelets, in biological systems," said Smith, whose work is published in the Journal of the American Chemical Society.

"We have developed a unique nanoparticle that is flat, like a disc, and encapsulated within a biological particle. These are derived from quantum dots and they similarly emit light, however, they have a slew of interesting optical and structural properties because of their shape.

Their light absorbing and light emitting properties are closer those of quantum wells, which are thin-layers used to make lasers. We find that these particles uniquely enter cells very rapidly and we are using them as sensors in living cells."

"The new colloidal material is a hybrid between an inorganic quantum well and an organic nanodisc composed of phospholipids and lipoproteins," explained Sung Jun Lim, a postdoctoral fellow in Smith's research group and first author of the paper, "Lipoprotein Nanoplatelets: Brightly Fluorescent, Zwitterionic Probes with Rapid Cellular Entry."

"The phospholipids bind to the flat faces on the nanoplatelet and lipoproteins bind to curved edges to homogeneously entrap the particles in biocompatible materials. They have long-term stability in biological buffers and high salt solutions and are highly fluorescent, with brightness comparable to quantum dots when measured in a solution or at the single-molecule level in a microscope."

According to Smith, these particles are especially useful for single-molecule imaging, where quantum dots have made the biggest impact due to their unique combination of high light emission rate and compact size. Quantum dots have recently enabled the discovery of a host of new biological processes related to human health and disease.

"We think the new capabilities provided by nanoplatelets are valuable for imaging biological molecules and cells, but it was previously challenging to stabilize these nanocrystals in biological media because their unusual dimensions cause them to stick together, aggregate, and lose fluorescence. This new class of nanoplatelets solves these problems and they are stable under harsh biological conditions because they are encapsulated in lipoproteins.

"We expect that this new material composite will reveal, at the single-molecule level, how flat materials interact with biological systems," Smith added. "The unique finding of rapid cellular entry suggests that these materials may be immediately useful for cellular labeling applications to allow highly multiplexed spectral encoding of cellular identity so that we can track metastatic cancer cells in the body. Unique shapes of nanoparticles also have been found to be more efficient for delivering drugs to tumors compared with standard spherical particles, so we are exploring this as well.

###

This work is the result of a collaboration between Smith's lab and the research group of Aditi Das, an assistant professor of comparative biosciences at Illinois. Other co-authors of the research paper include Mohammad U. Zahid, Daniel R. McDougle, Liang Ma, and Aditi Das. The paper is available online: http://pubs.acs.org/doi/abs/10.1021/jacs.5b11225.

Media Contact

Andrew M. Smith
smi@illinois.edu
217-300-5638

 @EngineeringAtIL

http://engineering.illinois.edu/ 

Andrew M. Smith | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>