Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-legged Robots Learn to Walk like a Human

17.10.2013
Heidelberg scientist coordinates new EU project “KoroiBot”

Teaching two-legged robots a stable, robust “human” way of walking – this is the goal of the international research project “KoroiBot” with scientists from seven institutions from Germany, France, Israel, Italy and the Netherlands.

The experts from the areas of robotics, mathematics and cognitive sciences want to study human locomotion as exactly as possible and transfer this onto technical equipment with the assistance of new mathematical processes and algorithms. The European Union is financing the three-year research project that started in October 2013 with approx. EUR 4.16 million. The scientific coordinator is Prof. Dr. Katja Mombaur from Heidelberg University.

Whether as rescuers in disaster areas, household helps or as “colleagues” in modern work environments: there are numerous possible areas of deployment for humanoid robots in the future. “One of the major challenges on the way is to enable robots to move on two legs in different situations, without an accident – in spite of unknown terrain and also with possible disturbances,” explains Prof. Mombaur, who heads the working group “Optimisation in Robotics and Biomechanics” at Heidelberg University’s Interdisciplinary Center for Scientific Computing (IWR).

In the KoroiBot project the researchers will study the way humans walk e.g. on stairs and slopes, on soft and slippery ground or over beams and seesaws, and create mathematical models. Besides developing new optimisation and learning processes for walking on two legs, they aim to implement this in practice with existing robots. In addition, the research results are to flow into planning new design principles for the next generation of robots.

Besides Prof. Mombaur’s group, the working group “Simulation and Optimisation” is also involved in the project at the IWR. The Heidelberg scientists will investigate the way movement of humans and robots can be turned into mathematical models. Furthermore, the teams want to create optimised walking movements for different demands and develop new model-based control algorithms. Just under EUR 900,000 of the European Union funding is being channelled to Heidelberg.

Partners in the international consortium are, besides Heidelberg University, leading institutions in the field of robotics. These include the Karlsruhe Institute of Technology (KIT), the Centre National de la Recherche Scientifique (CNRS) with three laboratories, the Istituto Italiano di Tecnologia (IIT) and the Delft University of Technology in the Netherlands. Experts from the University of Tübingen and the Weizmann Institute of Science in Israel will contribute from the angle of cognitive sciences.

Besides the targeted use of robotics, the scientists expect possible applications in medicine, e.g. for controlling intelligent artificial limbs. They see further areas of application in designing and regulating exoskeletons as well as in computer animation and in game design.

Information online:
http://www.orb.uni-hd.de
Contact:
Prof. Dr. Katja Mombaur
Interdisciplinary Center for Scientific Computing
Phone: +49 6221 54- 54-8867
katja.mombaur@iwr.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.orb.uni-hd.de

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>