Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hightec for nature: Bio-logging goes mini

03.04.2020

A multidisciplinary team of researchers has advanced remote tracking technology to study previously unobserved animal behaviours. Bio-logging, the automated remote recording of animal behaviour has so far been limited through the minimum size and weight of sensors to attach to animals. Now, small vertebrates like bats, lizards and birds can be tagged with miniaturized sensors providing information about their behaviour and habitat use in unprecedented resolution, the team reports in the journal “PLoS Biology”.

“Our sensor network takes bio-logging to the next level,” says Simon Ripperger of the Museum für Naturkunde Berlin who led the field deployments. Remote tracking of animal behaviour relies on devices called bio-loggers that are attached to animals.


They can be used to record movements within the habitat, interactions with other tagged animals and body functions like the heart rate.

However, data transmission or data exchange among animal-borne tags are energy-intense and require batteries that make conventional bio-loggers too heavy for most small vertebrate species.

... more about:
»animals »bats »movements »signals »train tracks

Furthermore, some habitat like dense forest or behaviour like resting inside trees, caves, or underground burrows hamper reception of the signals by satellites for GPS-tracking.

The research team has developed a system that consists of ground-based receivers that pick up signals from bio-loggers attached to animals. Received data is automatically processed, forwarded and stored for further analysis.

Smart algorithms and communication protocols reduce the energy demand to a minimum. However, the extent of habitat covered by the system is restricted: the team has tested it on areas that compare in size to three soccer fields, which is large enough to cover the home range of many small animals. In addition, the system is modular and can be extended.

At tag masses of one to two grams, the bio-loggers are able to transmit data for up to several weeks. Their signals can be used to locate their position, to trace movements even in structurally complex habitats like dense forest, and to record meetings of tagged animals at a time resolution of seconds.

“We are seeing a high spatial resolution and can record where animals roam and interact much more precisely than through conventional tracking systems,” Ripperger adds. The team has applied an almost energy neutral solution to remotely access the data over distances of several kilometres at low transmission rates.

The researchers chose bats to test and validate the system since they are small-bodied and move fast in dense vegetation, both challenges to the performance of wireless bio-logging networks.

They tagged vampire bats (Desmodus rotundus) in Panama to document social networks, mouse-eared bats (Myotis myotis) to study hunting behaviour in a mature deciduous forest in Germany, and common noctule bats (Nyctalus noctula) for long-range data access over more than four kilometres.

“Our system can provide new insights into the behaviours of many smaller animals who could not be tagged with such advanced sensors so far,” says Ripperger. Currently, it is tested to study the habitat use of sand lizards (Lacerta agilis) along train tracks in Germany. Further studies could focus on rodents, songbirds or even large insects such as stag beetles, bush crickets or hawk moths.

The wireless bio-logging network has been developed within the BATS-initiative funded by the German Research Foundation DFG. The Museum für Naturkunde cooperated with the Smithsonian Tropical Research Institute in Panama, the Ohio State University in the USA, the German Friedrich-Alexander University Erlangen-Nuremberg, Brandenburg University of Technology, Technische Universität Braunschweig, Paderborn University, and Berlin-Brandenburg Institute of Advanced Biodiversity Research.

Citation: Ripperger SP, Carter GG, Page RA, Duda N, Koelpin A, Weigel R, et al. (2020) Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLoS Biol 18(4): e3000655. https://doi.org/10.1371/journal.pbio.3000655

Dr. Gesine Steiner | idw - Informationsdienst Wissenschaft
Further information:
http://www.naturkundemuseum-berlin.de

Further reports about: animals bats movements signals train tracks

More articles from Interdisciplinary Research:

nachricht Magnetic nanopropellers deliver genetic material to cells
08.05.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Development of new system for combatting COVID-19 that can be used for other viruses
08.04.2020 | University of Texas Medical Branch at Galveston

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>