Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye-tracking data improves prosthetic hands

11.02.2020

Prosthetic hands restore only some of the function lost through amputation. But combining electrical signals from forearm muscles with other sources of information, such as eye tracking, promises better prostheses. A study funded by the SNSF gives specialists access to valuable new data.

The hand is a precious limb. Its 34 muscles and 20 joints enable movements of great precision and complexity which are essential for interacting with the environment and with others on a daily basis. Hand amputation thus has severe physical and psychological repercussions on a person’s life.


Everyday movements were recorded to populate a dataset.

© snsf, source: Henning Müller

Myoelectric prosthetic hands, which work by recording electrical muscle signals on the skin, allow amputees to regain some lost function. But dexterity is often limited and the variability of the electrical signals from the forearm alone makes the prosthetics sometimes unreliable.

Henning Müller, professor of business informatics, is investigating how combining data from myoelectric signals with other sources of information could lead to better prosthetics.

Müller has now made available to the scientific community a dataset that includes eye tracking and computer vision as well as other information (electromyography and acceleration sensor data).

The results of this work, funded by the Swiss National Science Foundation (SNSF), have just been published in Nature Scientific Data (*).

Leveraging gaze

“Our eyes move constantly in quick movements called saccades. But when you go to grasp an object, your eyes fixate on it for a few hundred milliseconds. Consequently, eye tracking provides valuable information about detecting both the object a person intends to grasp and the possible gestures required”, says Müller, professor at the HES-SO in Sierre and titular professor in the Faculty of Medicine at the University of Geneva.

Moreover, unlike the muscles of the amputated limb, which atrophy and send different myoelectric signals, gaze remains similar. Computer vision – i.e. computer recognition of objects in the field of vision – can also be used together with eye tracking to partially automate prosthetic hands.

In order to link common hand gestures with information from the muscles of the amputated limb and these new data sources, Müller studied 45 people – 15 amputees and 30 able-bodied subjects – in an identical experimental setting.

Each participant had 12 electrodes affixed to their forearm and acceleration sensors on their arm and head. Eye-tracking glasses recorded eye movements while the participants performed 10 common movements for grasping and manipulating various objects, such as picking up a pencil or a fork, or playing with a ball.

The movements were determined in collaboration with the Institute of Physiotherapy at the HES-SO Valais. Computer modelling of the gestures enabled Müller to build up a new multimodal dataset of hand movements comprising different types of data. The dataset includes information not only from the electrodes but also from recordings of forearm acceleration, eye tracking, computer vision and measurements of head movements.

Free access to data

This multidisciplinary study at the HES-SO, the University Hospital of Zurich and the Italian Institute of Technology in Milan was part of the Sinergia programme. “It’s a significant piece of work resulting from two years of data acquisition”, says Müller. “Importantly, we’ve had access to amputees through the University of Padua in Italy.

In Switzerland it’s hard to find large numbers of volunteers for these kinds of studies, and most datasets are thus based on only three to four participants.”

Another advantage of the new dataset is that the sample of amputees is comparable to that of the control group, which was not the case in previous studies. Using this data will make it possible to better understand the consequences of amputation.

The dataset offers prospects for the manufacture of smart myoelectric prosthetic hands. “By integrating the information from eye tracking, we can improve the functionality of the prosthetics and thus the comfort and independence of the amputees”, says Müller.

This important work has now been made freely available to the scientific community. More than a thousand research groups from all over the world have already accessed older versions of the dataset, developed during previous projects.


Encouraging interdisciplinary research

Sinergia is a programme of the Swiss National Science Foundation that promotes interdisciplinary collaboration of two to four groups engaged in pioneering research.

The text of this press release, a download image and further information are available on the website of the Swiss National Science Foundation.

Wissenschaftliche Ansprechpartner:

Henning Müller
HES-SO Valais
Technopole 3
3960 Sierre
Phone: + 41 27 606 90 36 / +41 76 516 5002
E-mail: henning.mueller@hevs.ch

Originalpublikation:

(*) M. Cognolato, A. Gijsberts, V. Gregori, G. Saetta, K. Giacomino, A.-G. Mittaz Hager, A. Gigli, D. Faccio, C. Tiengo, F. Bassetto, B. Caputo, P. Brugger, M. Atzori, H. Müller: Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics, Scientific Data (2020).
https://doi.org/10.1038/s41597-020-0380-3

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-200211-press-release-in...

SNF - Medien Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht A firm grip on any surface
13.03.2020 | Christian-Albrechts-Universität zu Kiel

nachricht How well is the heart perfused?
06.03.2020 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>