Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Epilepsy: Seizures not forecastable as expected

25.09.2019

Epileptic seizures can probably not be predicted by changes in brain wave patterns that were previously assumed to be characteristic precursors. This is the conclusion reached by scientists from the University of Bonn in a recent study. The results are now published in the journal “Chaos: An Interdisciplinary Journal of Nonlinear Science”.

During an epileptic seizure, large nerve cell clusters in the brain discharge simultaneously. The consequences are dramatic muscle spasms and loss of consciousness, which can be life-threatening.


Prof. Klaus Lehnertz (left) with Theresa Wilkat and Thorsten Rings in the laboratory.

© Photo: Gregor Gast/UKB


The scientists recorded subjects’ brain waves using up to 70 implanted electrodes.

© Photo: Gregor Gast/UKB

Many researchers assume that the brain has crossed a so-called "tipping point", which almost inevitably leads to a seizure.

The lead-up to this tipping point is supposedly heralded by characteristic changes in brain waves - so says a common hypothesis. According to this theory, nerve cell networks reproduce their own activity when close to this point:

The brain waves they produce are very similar to previous ones. At the same time, they react to disturbances with much stronger discharges than normal. Additionally, it takes longer for their activity to normalize.

"We call this 'critical slowing down', CSL for short," explains Prof. Dr. Klaus Lehnertz from the Department of Epileptology at the University Hospital Bonn.

Together with his former colleague Theresa Wilkat and his doctoral student Thorsten Rings, the physicist searched for such CSL events. For this purpose, the researchers analyzed brain wave recordings of 28 subjects with epilepsies that could not be treated with medication.

Measurements were taken using electrodes implanted at various sites in the subjects' brains. "This is for diagnostic purposes, for example, to identify the site from which the seizures originate," explains Lehnertz.

Unsuitable as an early warning system

The subjects had up to 70 sensors each in their brains. The scientists analyzed each individual EEG curve recorded by the sensors using sophisticated statistical methods. "We not only considered the hours before an attack, but also looked at a period of up to two weeks," Wilkat explains.

The result was disappointing: "Although we found a number of CSL events, these usually occurred completely independent of a seizure," emphasizes Lehnertz. "Only in two subjects we were able to observe a weak relationship with subsequent seizures." His conclusion: "Critical slowing down" is not suitable as an early warning sign, even if this is claimed in literature again and again.

He considers it more promising not to look at individual sites in the brain, but to understand these as parts of a network that influence each other. The cause of a seizure is most likely not the activity of a single nerve cell cluster that gets out of control.

"Instead, there are feedback and amplification effects that, as a whole, lead to this massive temporary brain malfunction," he emphasizes. Understanding these processes will also allow better forecasting techniques to be developed.

Epileptic seizures usually strike like a bolt from the blue, which significantly impacts the daily lives of those affected. For example, sufferers are not allowed to drive a car or carry out certain activities with a high risk of injury.

Epileptologists, physicists and mathematicians have therefore been trying to predict the dangerous malfunctions of the brain for more than three decades – so far with mixed success: There certainly are systems that can detect seizure precursors (using indicators other than "critical slowing down"), but at present they work only for about half of the subjects and are not particularly reliable. They can not recognize every precursor of a seizure and are also prone to false alarms.

However, this is not the only reason why scientists around the globe are looking for more reliable indicators in order to be able to warn subjects in good time. They also hope to be able to prevent an attack in advance through appropriate interventions.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Klaus Lehnertz
Department of Epileptology
University Hospital Bonn
Tel. +49 (0228) 287-15864
E-mail: Klaus.Lehnertz@ukbonn.de

Originalpublikation:

Theresa Wilkat, Thorsten Rings and Klaus Lehnertz: No evidence for critical slowing down prior to human epileptic seizures; Chaos: An Interdisciplinary Journal of Nonlinear Science, DOI: 10.1063/1.5122759

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Interdisciplinary Research:

nachricht Drugs for better long-term treatment of poorly controlled asthma discovered
15.10.2019 | University of South Florida (USF Health)

nachricht Dresden creates ground-breaking interface between technology and medicine
05.09.2019 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

Im Focus: Structured light promises path to faster, more secure communications

Quantum mechanics is embracing patterns of light to create an alphabet that can be leveraged to build a light-based quantum network

Structured light is a fancy way to describe patterns or pictures of light, but deservedly so as it promises future communications that will be both faster and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

 
Latest News

NTU Singapore researchers create quantum chip 1,000 times smaller than current setups

04.11.2019 | Information Technology

Sheffield scientists identify new potential treatment pathway for cardiovascular disease

04.11.2019 | Health and Medicine

A plethora of states in magic-angle graphene

04.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>