Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Look to the Birds for the Future of Unmanned Aerial Vehicles

01.06.2011
Engineers at UC San Diego are mimicking the movement of bird wings to help improve the maneuverability of unmanned aerial vehicles (UAVs).

UAVs are often used for surveillance of a fixed target in military and civilian applications. In order to observe a stationary target, a fixed wing UAV must remain airborne over the object, thus expending energy for propulsion and reducing operational time.

In addition, the aircraft may need to loiter at significant altitudes to avoid detection, and thus require complex sensors to observe the target far below. Rotary wing aircraft may be able to land on a perch for surveillance, but are generally less efficient for cruising flight than a fixed wing solution.

A fixed wing aircraft capable of spot landing on a perch (top of a pole, building, fence, etc.) would be an ideal solution capable of efficient cruising and versatile landing for longer surveillance missions. Because the target is nearby, simple sensors could be used onboard the perched aircraft. The problem of perching has already been solved by nature. Birds routinely land on small surfaces, using wing morphing and flapping techniques.

The UC San Diego engineers, led by mechanical and aerospace engineering professor Tom Bewley and graduate student Kim Wright, analyzed in slow motion several videos of birds landing to generate a working hypotheses for how wing morphing and flapping can be used for spot landing. “One of the key behaviors observed in the birds was their use of wing sweep for pitch control in both forward flight and stalled landing approaches,” she said.

“Birds can move their wings in a myriad of ways, providing a level of aerodynamic control that is unmatched by UAVs,” Wright said. To verify their hypotheses, Wright and her team built a small remote controlled UAV with variable wing sweep and tested it using computer modeling, and an onboard microcontroller as a flight data recorder.

Their initial testing validated the concept of using wing sweep for pitch control of the aircraft. The biologically-inspired aircraft design is similar in scale to the birds the engineers observed (barn owl, hawks, large parrots, crows) and has similar wing loading and airfoil characteristics. The fuselage and tail surfaces of the prototype UAV were primarily constructed from balsa wood and foam using standard hobby aircraft construction techniques.

The wings were formed using composite construction utilizing carbon fiber, fiberglass, high density foam, and rip stop nylon. Carbon fiber tubing was used for the shoulder joint structure, and fiberglass reinforcement was used in heavily stressed areas on the fuselage. Future research could address combining wing twist, flapping, or other wing morphing aspects of the perching problem that UAVs currently have. Being able to perch UAVs autonomously on features in the environment (tree tops, buildings, telephone poles, etc...), and then to take off again as required, is an immensely valuable and significantly increases mission duration.

“Combining these aspects into a fully actuated, intelligent UAV would be the ultimate goal,’ said Wright, who nabbed first place for this research under a poster titled “Investigating the use of wing sweep for pitch control of a small unmanned air vehicle,” during the Jacobs School’s Research Expo 2011. “A small UAV that could maneuver and land like a bird would be a valuable tool for surveillance and search and rescue. This project has brought the aerospace community a small step closer to that goal.”

Wright said the future of UAVs is diverse. UAVs are quickly becoming popular tools for the armed forces, but there are also a myriad of civilian applications, which are rapidly developing, such as wildfire monitoring, search and rescue, and traffic observation. “The technology is out there, and once federal aviation regulations are able to safely accommodate UAVs, I believe we will start seeing a lot more of them,” she said. Bewley added that sensor-equipped UAVs play an important emerging role for the tracking and accurate forecasting of the movement of large environmental plumes, such as the ash plume from the volcano in iceland and the radioactive plume from the nuclear accident in Japan. “There are several important scientific problems that need to be worked on to advance our capability to respond to such events,” Bewley said. “Two of the key underlying computational algorithms, state estimation (that is, synchronizing a large computer simulation of the environmental plume with the measurements taken in the recent past) and adaptive observation (that is, optimizing the trajectories of the sensor-equipped UAVs in the near future in order to minimize forecast uncertainty) are under intense scrutiny by our lab.

Initial experimental testing of these algorithms were performed by our lab in a parking lot at UC San Diego last summer, initially using small surface vehicles probing a heavy plume that hugged the ground. Doing analogous tests in airborne plumes that do not hug the ground requires UAVs that can loiter for long periods of time.”

Andrea Siedsma | Newswise Science News
Further information:
http://www.ucsd.edu

Further reports about: Aerial UAV Vehicle mimicking the movement unmanned aerial vehicles

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>