Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Description of rotating molecules made easy

21.12.2018

Interdisciplinary team of scientists develops a new numerical technique to describe molecules in solvents

Feynman diagrams are a powerful tool in condensed matter physics. By turning highly complex equations into sets of simple diagrams, the method has established itself as one of the sharpest tools in a theoretical physicist’s toolbox.


Feynman diagrams can now be used to describe rotating molecules in solvents.

IST Austria/Birgit Rieger

Giacomo Bighin, a postdoc in the group of Mikhail Lemeshko at the Institute of Science and Technology Austria (IST Austria), has now extended the Feynman diagram technique: originally devised for subatomic particles, the simplest objects imaginable, the technique can now work with molecules, far more complex objects.

The research, which was published in the journal “Physical Review Letters”, is expected to drastically simplify the description of molecular rotations in solvents. This brings scientists one step closer to their long-term goal of understanding chemical reactions in solvents at the microscopic level and, potentially, controlling them.

Sometimes when you’re stuck on a problem, the solution could be closer than you think, for instance in a different area of the research field you are working in. But thinking across disciplines is difficult and requires a good mix of expertise and an environment that fosters such interdisciplinary collaborations.

Giacomo Bighin found such an environment at IST Austria when he, a condensed matter physicist, joined the group of Mikhail Lemeshko, a molecular physicist. The result is a new method for molecular physics, one that can greatly facilitate the description of rotating molecules in solvents and paves the way for eventually controlling their reactions.

“Molecules always rotate, and how they interact with one another depends on their relative orientation. That is, if they hit another molecule with one end, it has a different effect than if they hit it with the other end,” explains Mikhail Lemeshko.

The orientation of molecules and hence chemical reactions have already been controlled in experiments on molecular gases, but it is quite challenging to do the same in solvents.

This is a long-term goal that Mikhail Lemeshko and his group are working towards, one step at a time. The step they have just taken is about being better able to describe the rotation of a molecule in a solvent—a prerequisite for eventually controlling reactions in this environment.

Transferring the method, however, was not easy. “Feynman diagrams work for point-like particles such electrons. Point-like means that they are not affected by rotations: if you rotate an electron, it looks exactly the same as before.

Molecules, on the other hand, are more complex and can rotate and change their orientation in space” explains Giacomo Bighin. In order to transfer the method from electrons to molecules, he had to develop a new formalism. Previously, it was not known if it would even work for molecules, and adapting the method took Bighin more than a year.

Now the formalism is ready to use in chemical problems. “We expect that people from a more molecular background will see that it is now possible to study molecules in this way. The technique delivers extremely precise results in condensed matter physics, and it has the potential to achieve the same accuracy in molecular simulations,” Lemeshko adds.

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Mikhail Lemeshko
Institute of Science and Technology Austria (IST Austria)
mikhail.lemeshko@ist.ac.at

Originalpublikation:

G. Bighin, T. V. Tscherbul, and M. Lemeshko: “Diagrammatic Monte Carlo Approach to Angular Momentum in Quantum Many-Particle Systems”, Phys. Rev. Lett. 121, 165301, DOI: 10.1103/PhysRevLett.121.165301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.165301

Weitere Informationen:

https://ist.ac.at/en/research/research-groups/lemeshko-group/ Website of the research group

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Electrons Feynman diagrams Molecules chemical reactions matter physics

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>