Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution

23.02.2018

Writing in Water Research, Austrian researchers from TU Graz and the University of Graz discuss new materials that prevent damage from microbial induced concrete corrosion.

Wastewater systems are integral to infrastructure in every community. In an ideal world, they operate smoothly and are long-lasting. But biogenic transformation processes in sewage and water treatment systems are a “natural enemy” of conventional plants, frequently causing damage to concrete and metal elements that is expensive to repair.


In field tests researchers from TU Graz and Graz University investigated the damage caused by microbial induced concrete corrosion.

© TU Graz


Microbial induced concrete corrosion (MICC) causes massive damage to wastewater plants. Researchers from Graz present a new solution against the sulphuric acid attack.

© TU Graz

As a result, it is not uncommon for wastewater systems to have a lifespan of under ten years, before they need to be refurbished or individual components replaced. Toxic gases released during biogenic processes, such as hydrogen sulphide, also pose a significant health risk, causing a range of symptoms from irritation to respiratory failure and death.

Writing in the journal Water Research, an interdisciplinary group of researchers from TU Graz and the University of Graz has outlined strategies aimed at preventing what is termed microbial induced concrete corrosion (MICC). The research team comprises two TU Graz staff members – Cyrill Grengg of the Institute of Applied Geosciences and Florian Mittermayr of the Institute of Technology and Testing of Construction Materials – as well as Günther Koraimann of the University of Graz’s Institute of Molecular Biosciences.

Microbial induced concrete corrosion: turning a blind eye not the answer

Cyrill Grengg of the Institute of Applied Geosciences at TU Graz explained: “MICC often corrodes the conventional types of concrete used in wastewater treatment plants at a rate of a centimetre or more per year. Accordingly, the concrete elements can be destroyed in a matter of only a few years, causing significant damage to wastewater systems.”

According to the researchers, there is often a lack of awareness of these processes and the resulting threat to wastewater infrastructure and human health. “Closing the manhole covers and looking the other way is not the answer,” Grengg added. In Germany alone, the economic impact of wastewater system repairs is put at around EUR 450 million per year. Although no data are currently available for Austria, the costs can be extrapolated and also applied to other European countries.

Microbial induced acid corrosion (MICC) in wastewater treatment facilities results from a sequence of biogenic sulphate reduction reactions, followed by reoxidation. Initially, sulphate in pressure pipelines or standing wastewater is reduced by bacteria under anaerobic – or oxygen-free – conditions, forming hydrogen sulphide. This pungent, highly poisonous gas escapes into the sewer air and diffuses into sewer pipes and manholes.

There reoxidation by autotrophic bacteria takes place on concrete walls that do not even come into contact with wastewater. These microorganisms produce sulphuric acid which reacts with concrete construction elements. As Günther Koraimann of the Institute of Molecular Biosciences at the University of Graz, who has studied these processes in detail, explains: “This leads to the vigorous formation of a biofilm on the surface of the concrete, a reduction of the pH value to below two, in other words highly acidic, and extensive formation of new minerals, mainly in the form of gypsum. The combination of these processes results in the rapid destruction of the concrete.”

Holistic solution

The Graz-based scientists worked on a holistic solution using an interdisciplinary research approach. In-depth research into the microstructural and microbiological processes was followed by the development of new MICC-resistant materials in close collaboration with the Institute of Construction and Building Materials at TU Darmstadt. In this context, geopolymer concrete proved to be particularly well suited to withstand acid corrosion.

When developing this building material, resistance to acid was an extremely desirable property, as were highly antibacteriostatic surfaces, on which the research team made significant advances – microorganisms that trigger the initial oxidation process are unable to settle on such surfaces in the first place. In turn, this prevents the formation of sulphuric acid.

Florian Mittermayr of the Institute of Technology and Testing of Construction Materials at TU Graz commented: “We achieved some very promising results with materials that have a far greater lifespan than conventional types of concrete. Use of these long-lasting materials would allow operators to refurbish damaged wastewater systems, significantly extending their service life and reducing the financial burden on local government and wastewater associations.”

The researchers published their latest findings on MICC prevention in the current issue of the journal Water Research 134 (2018) 341 - 352: "Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review."

The province of Styria provided financial backing for the research, and is dedicated to raising awareness of this global problem among Styrian local authorities and regional wastewater associations.

Contacts:

Cyrill GRENGG
Dr.
Institute of Applied Geosciences | TU Graz
Rechbauerstrasse 12, A-8010 Graz
Mobil: +43 680 3169642
Tel. +43 316 873 6366
E-mail: cyrill.grengg@tugraz.at

Florian MITTERMAYR
Dr.
Institute of Technology and Testing of Construction Materials | TU Graz
Inffeldgasse 24, A-8010 Graz
Tel. +43 316 873 7159
E-mail: f.mittermayr@tugraz.at

Günther Koraimann
Associate Professor Dr.
Institute of Molecular Biosciences | University of Graz
Humboldtstrasse 50, A-8010 Graz
Tel. +43 316 380 5626
E-mail: guenther.koraimann@uni-graz.at

Weitere Informationen:

https://www.journals.elsevier.com/water-research/
https://www.tugraz.at
https://www.uni-graz.at/

Barbara Gigler | Technische Universität Graz

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>