Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case Western Reserve University uncovers genetic basis for some birth defects

12.11.2008
Absence of ERK2 Gene linked to birth defects

A multidisciplinary research team at Case Western Reserve University led by Gary Landreth, Ph.D., a professor in the School of Medicine's Department of Neurosciences, has uncovered a common genetic pathway for a number of birth defects that affect the development of the heart and head. Abnormal development of the jaw, palate, brain and heart are relatively common congenital defects and frequently arise due to genetic errors that affect a key developmental pathway.

The research, titled "Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development" is published in the November 10 issue of the Proceedings of the National Academy of Sciences of the United States of America.

Landreth, also the senior author of the study, developed a mouse model of these disorders by removing a gene central to this developmental pathway, called ERK2. He, together with Dr. William Snider at the University of North Carolina, discovered that the mice missing the gene for ERK2 in neural crest cells had developmental defects resembling those of human patients with a deletion that includes this gene. The patients have features that are similar to DiGeorge syndrome, which is associated with cardiac and palate defects. Interestingly, the ERK2 gene is central to a well-known pathway already associated with a different distinct group of cardiac and craniofacial syndromes that include Noonan, Costello, Cardiofaciocutaneous syndrome, and LEOPARD syndrome.

Landreth enlisted the help of Michiko Watanabe, Ph.D., professor of Pediatrics at Case Western Reserve University School of Medicine to look at the mouse hearts. She and her team found that they had characteristic heart defects resembling those seen in the patients with ERK2 deletions.

"Given Dr. Watanabe's findings, we determined that we had in fact developed animal models that mimicked the human deletion syndrome," said Landreth. "This work sheds light on how these developmental errors occur."

Remarkably, Dr. Sulagna Saitta, a human geneticist at Children's Hospital of Philadelphia had identified children who had comparable heart defects as well as subtle facial differences. These children were all missing a very small region of chromosome 22 that contained the ERK2 gene.

Saitta agreed that the similarity in the anatomic structures affected in the mice and those in the patients who have lost one copy of this gene suggest that ERK2 and its pathway members are essential for normal development and might lead to these birth defects. These findings link together several distinct syndromes that are each characterized by cardiac and craniofacial abnormalities and show that they can result from perturbations of the ERK cascade.

Landreth and his team will take these findings back to the lab and find out exactly why cells need ERK2 during embryogenesis.

Funding was provided by the National Institutes of Health, the National Science Foundation, the National Heart Lung Blood Institue and a National Research Service Award.

To access the full study go to Proceedings of the National Academy of Sciences of the United States of America Web site: http://www.pnas.org/content/early/2008/10/23/0805239105.abstract?sid=15b66c02-fef5-4cc5-a1da-472459fa7f2c

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and 15th largest among the nation's medical schools for research funding from the National Institutes of Health. Eleven Nobel Laureates have been affiliated with the school.

The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching and in 2002, became the third medical school in history to receive a pre-eminent review from the national body responsible for accrediting the nation's academic medical institutions. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century.

Annually, the School of Medicine trains more than 600 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News and World Report Guide to Graduate Education. The School of Medicine's primary clinical affiliate is University Hospitals and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic Foundation, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002.

Christina Thompson | EurekAlert!
Further information:
http://www.case.edu
http://casemed.case.edu

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Lying in a foreign language is easier

19.07.2018 | Social Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>