Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon, Microsoft researchers demonstrate internal tagging technique for 3D-printed objects

23.07.2013
Terahertz imaging could read information encoded inside objects

The age of 3D printing, when every object so created can be personalized, will increase the need for tags to keep track of everything. Happily, the same 3D printing process used to produce an object can simultaneously generate an internal, invisible tag, say scientists at Carnegie Mellon University and Microsoft Research.

These internal tags, which the researchers have dubbed InfraStructs, can be read with an imaging system using terahertz (THz) radiation, which can safely penetrate many common materials. In proof-of-concept experiments, Karl Willis, a recent Ph.D. graduate in computational design at Carnegie Mellon, and Andy Wilson, a principal researcher at Microsoft Research, have demonstrated several possible tag designs and the THz imaging and data processing steps necessary to read them.

The tags themselves come at no extra cost, Willis said, but THz imaging, still in its infancy, can be pricey. As this imaging technology matures and becomes more affordable, however, InfraStructs could be used for a number of applications beyond keeping track of inventory or making point-of-sale transactions.

For instance, they could help mobile robots recognize or differentiate between things. They might encode information into custom accessories used in game systems. Or, they might enable new tabletop computing scenarios in which objects can be sensed regardless of whether they are stacked, buried or inserted inside other objects.

Willis and Wilson will present their findings July 25 at SIGGRAPH 2013, the International Conference on Computer Graphics and Interactive Techniques, in Anaheim, Calif.

Unlike conventional manufacturing, every single thing produced with digital fabrication techniques, such as 3D printing and laser cutting, can differ from the next, even in subtle ways. "You probably don't want to have visible barcodes or QR codes on every object you make," Willis said. Inserting a radio frequency identification (RFID) tag into each component would be a possibility, he acknowledged, but for now that would require interrupting the normal 3D printing process.

InfraStructs, by contrast, can be made with the same layer-by-layer process used for producing the object. In some cases, information can be encoded by positioning bubbles or voids inside the object; those voids reflect THz radiation. In other cases, materials that are reflective of THz radiation might be used to encode the information or create images inside the object.

"The ability to embed 3D patterns gives designers new opportunities in creating objects that are meant to be sensed and tracked," Wilson said. "One idea is to embed a code just under the surface of the object, so that a THz beam can recover its position on the surface, wherever it strikes the object."

THz radiation falls between microwaves and infrared light on the electromagnetic spectrum. It can penetrate many common plastics, papers and textiles but, unlike X-rays, does not harm biological tissues. THz imaging has yet to be fully commercialized. NASA famously has used it for inspecting the protective tiles on the space shuttle, detecting the same sort of voids Willis and Wilson have now used to encode information with InfraStructs.

Willis' work on InfraStructs occurred while he was an intern at Microsoft Research. Additional research on materials, fabrication processes and imaging techniques will be necessary if the tags are to be widely adopted. InfraStructs aim to take advantage of trends toward high-speed electronics at THz frequencies and the rapidly growing capabilities of digital fabrication.

For more information, visit the project website at http://www.karlddwillis.com/projects/infrastructs/ or the Microsoft Research Blog.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 12,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon has campuses in Pittsburgh, Pa., California's Silicon Valley and Qatar, and programs in Africa, Asia, Australia, Europe and Mexico. The university recently completed "Inspire Innovation: The Campaign for Carnegie Mellon University," exceeding its $1 billion goal to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements. The campaign closed June 30, 2013.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>