Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Following the brain’s lead

07.11.2013
When designed to process sound based on familiar patterns, sound recognition by computers becomes more robust

Computers, machines and even smart phones can process sounds and audio signals with apparent ease, but they all require significant computing power.


A brain-based pattern-recognition process that searches for familiar features in the audio spectrum improves sound recognition in computers.
Copyright : 2013 A*STAR Institute for Infocomm Research

Researchers from the A*STAR Institute for Infocomm Research in Singapore have proposed a way to improve computer audio processing by applying lessons inspired from the way the brain processes sounds.

“The method proposed in our study may not only contribute to a better understanding of the mechanisms by which the biological acoustic systems operate, but also enhance both the effectiveness and efficiency of audio processing,” comments Huajin Tang, an electrical engineer from the research team.

When listening to someone speaking in a quiet room, it is easy to identify the speaker and understand their words. While the same words spoken in a loud bar are more difficult to process, our brain is still capable of distinguishing the voice of the speaker from the background noise. Computers, on the other hand, still have considerable problems identifying complex sounds from a noisy background; even smart phones must send audio signals to a powerful centralized server for processing.

Considerable computing power at the server is required because the computer continuously processes the entire spectrum of human audio frequencies. The brain, however, analyzes information more selectively: it processes audio patterns localized in time and frequency (see image). When someone speaks with a deep voice, for example, the brain dispenses with analyzing high-pitched sounds. So when a speaker in a loud bar stops talking, the brain stops trying to catch and process the sounds that form his words.

Tang and his team emulated the brain’s sound-recognition strategy by identifying key points in the audio spectrum of a sound. These points could be characteristic frequencies in a voice or repeating patterns, such as those of an alarm bell. They analyzed the signal in more detail around these key points only, looking for familiar audio frequencies as well as time patterns. This analysis enabled a robust extraction of matching signals when a noise was present. To improve the detection over time, the researchers fed matching frequency patterns into a neurological algorithm that mimics the way the brain learns through the repetition of known patterns.

In computer experiments, the algorithm successfully processed known target signals, even in the presence of noise. Expanding this approach, says Tang, “could lead to a greater understanding of the way the brain processes sound; and, beyond that, it could also include touch, vision and other senses.”

Journal information

Dennis, J., Yu, Q., Tang, H., Tran, H. D. & Li, H. Temporal coding of local spectrogram features for robust sound recognition. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 26–31 May 2013.

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>