Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Architecture and design help the brain to recover

02.11.2011
How does the hospital environment affect our rehabilitation?

New research from the University of Gothenburg, Sweden, into how the space around us affects the brain reveals that well-planned architecture, design and sensory stimulation increase patients’ ability to recover both physically and mentally. Digital textiles and multisensory spaces can make rehabilitation more effective and reduce the amount of time spent in care.

In an interdisciplinary research project, Kristina Sahlqvist has used research into the recovery of the brain to examine how hospitals can create better environments for rehabilitation.

“We want to help patients to get involved in their rehabilitation, a side effect of which can be an improvement in self-confidence,” says Sahlqvist, interior architect and researcher at the University of Gothenburg’s School of Design and Crafts (HDK).

The project drew on all the expertise used on a ward, with input from neurologists, rehabilitation doctors, nurses, psychologists, occupational therapists and physiotherapists. The result is a conceptual solution for an optimal rehabilitation ward.

“Our concept gives the ward a spatial heart, for example, where patients and their families can prepare food and eat together, which allows for a more normal way of spending time together in a hospital environment,” says Sahlqvist.

In tandem with her research work, she has teamed up with a designer and researcher at the Swedish School of Textiles in Borås on an artistic development project where they redesigned furniture, developed easy-grip cups and cutlery and used smart textiles, in other words textiles with technology embedded in them. The concept includes a table and chairs, a rug and a muff with integral heating, a cardigan with speakers and a soft bracelet that is also a remote control.

In order to measure and test the research theories Sahlgrenska University Hospital will be developing an intensive care room featuring multimodal stimulation, where all the senses are affected. The work involves an architect, doctors, hospital staff, musicians, a designer, an acoustician and a cognition specialist. In a bid to see what kind of results the environment can produce in practice, the researchers will take account of the entire social situation of patients, family and staff.

There are other interesting tricks in the field of neuroarchitecture, where it is possible, for example, to use spatial expressions to improve learning. Although these are currently used predominantly in schools, they could also have potential for the elderly.

“It’s worth wondering why there are so many educational models for preschool children but so few for the elderly. Many old people need a far more stimulating environment than they have at the moment,” says Sahlqvist.

For more information, please contact: Kristina Sahlqvist
Mobile: +46 (0)733 528 164
E-mail: kristina.sahlqvist@hdk.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Interdisciplinary Research:

nachricht Nanocontainers introduced into the nucleus of living cells
28.01.2020 | Universität Basel

nachricht How we transport water in our bodies inspires new water filtration method
17.12.2019 | University of Texas at Austin

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

Unique centromere type discovered in the European dodder

28.01.2020 | Life Sciences

It’s closeness that counts: how proximity affects the resistance of graphene

28.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>