Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applied nanobiomedicine: Exploiting nanoparticles to hunt for hidden cancer cells

08.06.2012
Launch of the interdisciplinary joint project "MRCyte"

The German Federal Ministry of Education and Research provides over €300,000 for the next three years to fund a new research project at the Mainz University Medical Center. The project aims to detect dispersed tumor cells in cancer patients. Latest reports indicate that such detached cancer cells could play an important role for the early detection of cancer.

Also, they may provide important information whether patients are indeed responding to therapy. To overcome the current limitations precluding the routine detection of these rare cells, the research network seeks to exploit a novel combination of nanotechnology combined with principles underlying hard drive technology. The research team headed by Professor Dr. Roland Stauber of the Department of Otolaryngology, Head, and Neck Surgery at the Mainz University Medical Center is embedded in the recently initiated "Magnetic Flow Cytometry" (MRCyte) project.

Almost all forms of cancer occur much more frequently in older patients than in younger people. Demographic changes and the general increase in life expectancy mean that individuals are at increased risk of developing cancer. According to the Cancer Information Service (KID) of the German Cancer Research Center, it is expected that some 486,000 new cases of cancer will be reported in Germany in 2012. Despite innovative treatments and the fact that more and more people survive their illness, cancer is still one of the most common causes of death in Germany due to its increased prevalence.

In addition to the development of novel cancer treatment strategies, early disease detection and the monitoring of patient response is highly effective in reducing mortality. "Latest findings seem to indicate that dispersed tumor cells are actually an early warning signal not only of cancer development but also of relapse following therapy," explains project manager Professor Roland Stauber. The detection of such tumor cells in the blood of cancer patients is thus of particular interest in terms of both diagnosis and prognosis. However, before this knowledge can be exploited routinely in the clinics, the development of reliable and easy-to-use detection systems is a must. Such devices need to ensure that isolated tumor cells can be reliable and dynamically detected without the need for complex prior sample preparation. Hence, during the new research project, the researchers in Mainz and their collaborative partners from industry and academia are aiming at the development of a method that allows the concentration of rare cells in patients’ blood by a novel combination of nanoparticle-based magnetic flow cytometry combined with hard drive read head detection technology. "Early detection is still the crucial factor in the fight against cancer. The strategy adopted in the MRCyte joint project is tremendously innovative and could well open up new dimensions for future treatment concepts," explains the Scientific Director of the Mainz University Medical Center, Professor Dr. Dr. Reinhard Urban.

Still, one of the main challenges prior to applying the research results from "bench to bedside" is based on the fact that cancer cells can vastly differ in terms of appearance, size, and composition compared to their healthy "sister" cells. This makes it even more difficult to reliably detect detached tumor cells. "Clearly, before our approach can be used on patients, extensive laboratory research is required," emphasizes Stauber.

"Fortunately, our experience and developed technologies obtained during a previous project supported by the Rhineland-Palatinate Trust for Innovation will help us to rationally address these caveats in order to further improve patients’ care procedures," Professor Roland Stauber is confidently looking ahead. The funding will therefore provide a decisive impetus for the implementation of innovative projects with a high practical relevance.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/15411.php

More articles from Interdisciplinary Research:

nachricht Decoding the regulation of cell survival - A major step towards preventing neurons from dying
04.10.2018 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht New Cluster of Excellence “Centre for Tactile Internet with Human-in-the-Loop” (CeTI)
28.09.2018 | Technische Universität Dresden

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>