Applied nanobiomedicine: Exploiting nanoparticles to hunt for hidden cancer cells

The German Federal Ministry of Education and Research provides over €300,000 for the next three years to fund a new research project at the Mainz University Medical Center. The project aims to detect dispersed tumor cells in cancer patients. Latest reports indicate that such detached cancer cells could play an important role for the early detection of cancer.

Also, they may provide important information whether patients are indeed responding to therapy. To overcome the current limitations precluding the routine detection of these rare cells, the research network seeks to exploit a novel combination of nanotechnology combined with principles underlying hard drive technology. The research team headed by Professor Dr. Roland Stauber of the Department of Otolaryngology, Head, and Neck Surgery at the Mainz University Medical Center is embedded in the recently initiated “Magnetic Flow Cytometry” (MRCyte) project.

Almost all forms of cancer occur much more frequently in older patients than in younger people. Demographic changes and the general increase in life expectancy mean that individuals are at increased risk of developing cancer. According to the Cancer Information Service (KID) of the German Cancer Research Center, it is expected that some 486,000 new cases of cancer will be reported in Germany in 2012. Despite innovative treatments and the fact that more and more people survive their illness, cancer is still one of the most common causes of death in Germany due to its increased prevalence.

In addition to the development of novel cancer treatment strategies, early disease detection and the monitoring of patient response is highly effective in reducing mortality. “Latest findings seem to indicate that dispersed tumor cells are actually an early warning signal not only of cancer development but also of relapse following therapy,” explains project manager Professor Roland Stauber. The detection of such tumor cells in the blood of cancer patients is thus of particular interest in terms of both diagnosis and prognosis. However, before this knowledge can be exploited routinely in the clinics, the development of reliable and easy-to-use detection systems is a must. Such devices need to ensure that isolated tumor cells can be reliable and dynamically detected without the need for complex prior sample preparation. Hence, during the new research project, the researchers in Mainz and their collaborative partners from industry and academia are aiming at the development of a method that allows the concentration of rare cells in patients’ blood by a novel combination of nanoparticle-based magnetic flow cytometry combined with hard drive read head detection technology. “Early detection is still the crucial factor in the fight against cancer. The strategy adopted in the MRCyte joint project is tremendously innovative and could well open up new dimensions for future treatment concepts,” explains the Scientific Director of the Mainz University Medical Center, Professor Dr. Dr. Reinhard Urban.

Still, one of the main challenges prior to applying the research results from “bench to bedside” is based on the fact that cancer cells can vastly differ in terms of appearance, size, and composition compared to their healthy “sister” cells. This makes it even more difficult to reliably detect detached tumor cells. “Clearly, before our approach can be used on patients, extensive laboratory research is required,” emphasizes Stauber.

“Fortunately, our experience and developed technologies obtained during a previous project supported by the Rhineland-Palatinate Trust for Innovation will help us to rationally address these caveats in order to further improve patients’ care procedures,” Professor Roland Stauber is confidently looking ahead. The funding will therefore provide a decisive impetus for the implementation of innovative projects with a high practical relevance.

Media Contact

Petra Giegerich idw

All latest news from the category: Interdisciplinary Research

News and developments from the field of interdisciplinary research.

Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors