Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stroke patients relearning how to walk with peculiar shoe

18.09.2019

A therapeutic shoe engineered to improve stroke recovery is proving successful and expected to hit the market by the end of the year. Clinical trials have been completed on the U.S. patented and licensed iStride Device, formerly the Gait Enhancing Mobile Shoe (GEMS), with results just published in the Journal of NeuroEngineering and Rehabilitation.

Stroke sufferers experience muscle weakness or partial paralysis on one side of the body, which greatly impacts how they walk, known as gait. Gait asymmetry is associated with poor balance, a major cause of degenerative issues that make individuals more susceptible to falls and injuries.


The iStride device is strapped over the shoe of the good leg and generates a backwards motion, exaggerating the existing step, making it harder to walk while wearing the shoe. The awkward movement strengthens the stroke-impacted leg, allowing gait to become more symmetrical once the shoe is removed.

Credit: University of South Florida


The iStride device is a therapeutic shoe engineered to improve stroke recovery.

Credit: University of South Florida

The iStride device is strapped over the shoe of the good leg and generates a backwards motion, exaggerating the existing step, making it harder to walk while wearing the shoe.

The awkward movement strengthens the stroke-impacted leg, allowing gait to become more symmetrical once the shoe is removed. The impaired foot wears a matching shoe that remains stationary.

"The backward motion of the shoe is generated passively by redirecting the wearer's downward force during stance phase. Since the motion is generated by the wearer's force, the person is in control, which allows easier adaptation to the motion," said developer Kyle Reed, PhD, associate professor of mechanical engineering at the University of South Florida.

"Unlike many of the existing gait rehabilitation devices, this device is passive, portable, wearable and does not require any external energy."

The trial included six people between ages 57 and 74 who suffered a cerebral stroke at least one-year prior to the study. They all had asymmetry large enough to impact their walking ability. Each received twelve, 30-minute gait training sessions for four weeks.

With guidance from a physical therapist, the patients' gait symmetry and functional walking were measured using the ProtoKinetics Zeno Walkway system.

All participants improved their gait's symmetry and speed. That includes how long it takes to stand up from a sitting position and walk, as well as how long it takes to walk to a specific location and distance traveled within six minutes. Four improved the percentage of time spent in a gait cycle with both feet simultaneously planted on the ground, known as double limb support.

As far as the other two that didn't improve, one started the study with severe impairment, while the other was highly functional. It's also important to note that three participants joined the study limited to walking in their homes. Following the trial, two of them could successfully navigate public venues.

Reed compared his method to a previous study conducted on split-belt treadmill training (SBT), which is commonly used by physical therapists to help stroke patients improve their gait. The equipment allows the legs to move at different speeds, forcing the patient to compensate in order to remain on the treadmill. While the SBT improves certain aspects of gait, unlike the iStride, it doesn't strengthen double limb support.

That research concluded only about 60 percent of patients trained on the SBT corrected their gait when walking in a normal environment. Walking is context dependent where visual cues impact how quickly one tries to move, and in what direction. The iStride allows patients to adjust accordingly. Movement on a treadmill is predictable and provides individuals a static scene.

Since patients are often disappointed in their progress after being discharged from rehabilitation, the iStride's portability allows patients to relearn to walk in a typical setting more often and for a longer duration. Reed is now working on a home-based clinical trial with 21 participants and expects to publish results within the next year.

He recently received a Fulbright scholarship to conduct research at Hong Kong Polytechnic University. He's working in the rehabilitation sciences and biomedical engineering departments throughout the 2019-2020 academic year.

Tina Meketa | EurekAlert!
Further information:
http://dx.doi.org/10.1186/s12984-019-0569-x

More articles from Innovative Products:

nachricht A rail system allows child seat to be simply attached to the wheelchair
06.11.2019 | Technische Universität Kaiserslautern

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

DYNAFLEX® at e-World 2020

23.01.2020 | Trade Fair News

Thinking fast & slow: New DFKI project aims at making Deep Learning methods more reliable

23.01.2020 | Information Technology

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>