Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Design Handle To Make Lifting Car Seats Safer, Easier

30.11.2011
Engineers at North Carolina State University have developed a new handle for infant car seats (ICSs) that makes it easier for parents to lift the seat out of a car – while retaining a firmer grip on the handle – making it less likely that the seat will be dropped.

“Many products that are designed for parents don’t take ergonomics into account, and the instructions are usually not very helpful,” says Michael Clamann, a Ph.D. student at NC State and lead author of a paper describing the research. “We wanted to see whether, by changing the angle of the ICS handle, we could make it easier on parents and safer for the baby. Our idea was that it would be easier to hold on to the seat, minimizing the risk of dropping it.” The idea was inspired by Clamann’s experiences as a parent.


Citations
Applied Ergonomic
Caleb Burrus, North Carolina State University
By changing the angle of the ICS handle, the NC State team made it easier on parents and safer for infants.

The researchers based their new handle design on existing research that details which angles reduce “ulnar deviation,” or how much your wrist bends, and associated pressure in the carpal tunnel. This is important in terms of lifting tasks, because the further you bend your wrist, the weaker your grip.

The researchers tested the new design versus the traditional ICS handle with 10 different women of similar height (5th to 20th percentile in height). Participants were asked to lift the car seat out of a mock-up midsize sedan and place it into a stroller.

The team used sensors to measure muscular activity at the forearm and biceps and the wrist angle of the participants as they lifted the ICSs with different handle designs.

“Our angled handle lets people better position themselves over the car seat,” Clamann says, “and allowed them to use their biceps more than their forearm muscles. That’s an improvement, because our biceps are stronger than our forearms, and so are better able to bear weight. This is particularly important for smaller females lifting ICSs.” The participants also told researchers that the angled handle design was easier to lift.

The team also tested to see how foot placement – in the car or on the ground – affected the participants’ posture – and therefore their wrist angle. Such foot placement was previously recommended in the popular press literature regarding ICS handling.

“We found that placing your foot in the car to help lift the ICS allowed participants to use their biceps more and reduced how much they bent their wrists – giving them a firmer grip on the ICS,” says Kinley Taylor, an NC State graduate student and co-author of the paper. “However,” adds Clamann, “putting your foot in the car also increased the likelihood of hitting your head on the doorframe.”

The researchers plan to move forward with additional efforts to see how variations on the angled handle design affect ergonomics when used in different car designs, such as minivans, and for people who are significantly taller than the participants in this study.

The paper, “Comparison of infant car seat grip orientations and lift strategies,” is published online in Applied Ergonomics. The paper was co-authored by: Clamann; Taylor; Dr. David Kaber, a professor of industrial and systems engineering at NC State and director of the Occupational Safety & Ergonomics Program; and former NC State students Leah Beaver and Dr. Biwen Zhu. The research was supported, in part, by the National Institute for Occupational Safety and Health.

Dr. David Kaber, (919) 515-0312 or dbkaber@ncsu.edu
Michael Clamman, (919) 515-7210 or mpclaman@ncsu.edu
Matt Shipman, NC State News Services, (919) 515-6386 or matt_shipman@ncsu.edu

Matt Shipman | Newswise Science News
Further information:
http://www.ncsu.edu

Further reports about: Design Thinking Ergonomics ICS Occupational Seats foot placement

More articles from Innovative Products:

nachricht A ski jacket that actively gets rid of sweat
30.01.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht A fashionable chemical and biological threat detector-on-a-ring
12.10.2017 | American Chemical Society

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>