Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shampoo bottle that empties completely -- every last drop

27.06.2016

Coating to make soap pour cleanly out of plastic bottles, reduce waste and frustration

It's one of life's little annoyances: that last bit of shampoo that won't quite pour out of the bottle. Or the last bit of hand soap, or dish soap, or laundry detergent.


You thought getting ketchup out of a bottle was hard? Ohio State University researchers have tackled an even harder problem: getting shampoo out of a bottle. The chemicals that make soap "soapy" also make them stick to plastic, but here a microscopic coating makes the soap just roll off.

Credit: Video by Philip S. Brown and Joe Camoriano, courtesy of The Ohio State University.

Now researchers at The Ohio State University have found a way to create the perfect texture inside plastic bottles to let soap products flow freely. They describe the patent-pending technology in a paper to appear in the journal Philosophical Transactions of the Royal Society on June 27.

The technique involves lining a plastic bottle with microscopic y-shaped structures that cradle the droplets of soap aloft above tiny air pockets, so that the soap never actually touches the inside of the bottle. The "y" structures are built up using much smaller nanoparticles made of silica, or quartz--an ingredient in glass--which, when treated further, won't stick to soap.

If it sounds like engineers Bharat Bhushan and Philip Brown went to a lot of trouble to solve this problem, you're right. But the solution they found is actually simpler and less expensive than alternatives under development elsewhere. And it works for a common plastic used to package foodstuffs and household goods: polypropylene.

"It's what you'd call a first-world problem, right? 'I can't get all of the shampoo to come out of the bottle.' But manufacturers are really interested in this, because they make billions of bottles that end up in the garbage with product still in them," said Bhushan, Ohio Eminent Scholar and Howard D. Winbigler Professor of mechanical engineering at Ohio State.

Coatings already exist to help food, but not soap, pour out of their containers, he said.

"Compared to soaps, getting ketchup out of a bottle is trivial. Our coating repels liquids in general, but getting it to repel soap was the hard part."

The key, he explained, is surface tension--the tendency of the molecules of a substance to stick to each other. Ketchup and other sauces are made mostly of water, and water molecules tend to stick to each other more than they stick to plastic.

But surfactants--the organic molecules that make soap "soapy"--are just the opposite: They have a very low surface tension and stick to plastic easily, explained Brown, a postdoctoral fellow.

"It was an extra challenge for us to make a surface that could repel surfactant," he agreed.

Their goal, which was suggested by a commercial shampoo manufacturer, was to create a shampoo bottle lining that was cheap, effective and environmentally friendly.

Soap and shampoo clean our skin and hair by bonding chemically with both oil and water, so the surface oils that were on our bodies wash off when we rinse. The same goes for dishes. During clothes washing, detergent performs double-duty, releasing oils and also helping water penetrate fabrics. It's that tenacity that makes the last drops of surfactant cling to the insides of bottles.

Bhushan and Brown came up with a method to spray-coat a small amount of solvent and ultra-fine silica nanoparticles onto the inside of bottles. Manufacturers already use solvents to change the texture of molded plastics, because they cause the surface of the plastic to soften a little. By mixing the silica and solvent, the researchers were able to soften the surface of the polypropylene just enough that when the plastic re-hardened, the silica would be embedded in the surface.

The structures are only a few micrometers--millionths of a meter--high, and covered in even smaller branchlike projections. They look like shaggy heart-shaped pillows, but they're hard as glass.

They don't cover the inside of the bottle completely, either, but instead are planted a few micrometers apart. The main branches of the "y" overhang the plastic surface at an angle less than 90 degrees--steep enough that water, oils and even surfactant can't physically sustain a droplet shape that would fall in between the branches and touch the plastic.

"You end up with air pockets underneath, and that's what gives you liquid repellency," Brown said.

Instead of spreading out on the surface, the soap droplets form beads and roll right off.

Researchers have known for some time that a support structure with the right angle of overhang would solve this problem, and some have tried to carve the shapes into plastic manually using photolithography--the same technique that shapes computer chips.

"That's expensive and time consuming," Brown said. "Plus, they end up with fragile little overhangs that snap off. We embedded a hard material directly into the polymer surface, so we know it's durable."

Polypropylene isn't the most common plastic bottle material, but 177 million pounds of it were made into bottles and bottle lids in the United States in 2014 alone, according to the American Chemistry Council (ACC). Aside from shampoo, soap and detergent bottles, it's also used for yogurt tubs, ketchup bottles and medical bottles, single-serve coffee pods and Starbucks iced beverage cups.

Polypropylene is classified as a "number 5" plastic by the Resin Identification Coding System. A recent ACC report found that recycling of number 5 plastics is on the rise, increasing from 44.2 million pounds in 2013 to 45.6 million pounds in 2014. Only about two-thirds of American curbside recycling services accept it, but commercial companies such as Preserve of Waltham, Massachusetts, and Whole Foods grocery stores nationwide are working with manufacturers and retailers to collect number 5 plastic containers and make them into useful products.

The Ohio State invention could actually aid recycling. Before plastic bottles can be recycled, they have to be rinsed completely clean, and Bhushan suspects that he's not the only person who doesn't bother.

"We all struggle with shampoo bottles at home," Bhushan said. "I have a few in my shower right now. Trying to get the last drop out, I put it upside down, and my wife adds water to the bottle and fights with it for a while, and then we give up and just throw it away."

With further development, the university hopes to license the coating technique to manufacturers--not just for shampoo bottles, but for other plastic products that have to stay clean, such as biomedical devices or catheters. They have already applied the same technique to polycarbonate, a plastic used in car headlights and smartphone cases, among other applications.

###

Contacts: Bharat Bhushan. 614-292-0651, Bhushan.2@osu.edu

Philip Brown; Brown.5860@osu.edu

Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

Further reports about: Nanoparticles Polypropylene biomedical devices bottle coating droplets plastic structures

More articles from Innovative Products:

nachricht Designing a puncture-free tire
30.01.2020 | University of Illinois College of Engineering

nachricht A rail system allows child seat to be simply attached to the wheelchair
06.11.2019 | Technische Universität Kaiserslautern

All articles from Innovative Products >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>