Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record in data transmission with smart circuits

21.10.2014

Fewer cords, smaller antennas and quicker video transmission. This may be the result of a new type of microwave circuit that was designed at Chalmers University of Technology. The research team behind the circuits currently holds an attention-grabbing record. Tomorrow the results will be presented at a conference in San Diego.

Every time we watch a film clip on our phone or tablet, an entire chain of advanced technology is involved. In order for the film to start playing in an even sequence when we press the play button, the data must reach us quickly via a long series of devices, antennas and receivers. With an increasing number of users, higher demands on image quality and more wireless systems, producing methods for transmitting the enormous amounts of data through the air with the right speed poses a major challenge.


The photo shows the 140 GHz transmitter chip, containing an I-Q modulator, a 3-stage amplifier, and a x3 frequency multiplier for the local oscillator. The chip was designed by Sona Carpenter, Herbert Zirath, and Mingquan Bao. Data-transmission measurements was done by Simon He. The chip size is 1.6x1.2 mm2.

Credit: Sona Carpenter

The solution might be to use higher frequencies than today, from 100 Gigahertz and higher, since this would give access to a larger band of empty frequencies, enabling a higher data rate. Researchers all over the world are working to produce data circuits that can transmit and receive signals that are strong enough at higher frequencies. A Swedish group from Chalmers University of Technology and Ericsson has already been successful.

"We have designed circuits for signals at 140 Gigahertz, where we have a large bandwidth. In laboratory testing, we have achieved a transmission rate of 40 Gigabit data per second, which is twice as fast as the previous world record at a comparable frequency," says Herbert Zirath, who is a professor in high speed electronics at Chalmers. He is also employed by Ericsson Research on a part-time basis.

As a result of the record, the researchers have been asked to talk about their results together with a few other researchers under the heading "Breaking News" on Wednesday at the Compound Semiconductor Integrated Circuits Symposium conference in San Diego.

"Just being asked to present research results at the conference at all is a mark of quality. For our research to then be selected as one of the most important items to be presented as breaking news is naturally huge."

Herbert Zirath says that semiconductor materials development has enabled manufacture of circuits that can transmit high frequency signals with sufficiently high power. The circuits, which are made of the semiconductor material indium phosphide, are so small that a microscope is needed to distinguish the details.

Some of the applications for quicker wireless data transmission that Herbert Zirath envisions include major cultural and sports events where high-resolution live films need to be transmitted to screens without any delay or long cables, and communication within and between the large computer rooms where our digital files end up when we place them in "the cloud". Improved wireless transmission can also mean fewer cords in our homes and at our workplaces. The quick circuits are of interest to Ericsson in terms of transmitting signals to and from base stations and cellular towers.

"This is a very exciting area to be involved in, since the heavily increasing amount of data demands new solutions all the time. The fact that an increasing number of people are watching films wirelessly is the primary reason underlying the need for quicker transmission today."

The project is being funded by the Swedish Foundation for Strategic Research, and the next step for the project's researchers involves moving from the laboratory to the outdoors to test the circuits under real circumstances. Even though there are many aspects that have to fall into place for successful data transmission, Herbert Zirath is not nervous. Within a few years, the goal within the project is to demonstrate wireless data transfer of 100 Gigabit per second.

"I believe it is only a matter of a couple of years before our circuits will be used in practical applications."

More Information: www.chalmers.se

Johanna Wilde | Eurek Alert!

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>