Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World record in 3d-imaging of porous rocks

19.10.2011
A stack of 35 million megapixel-photos

A team of physicists headed by Prof. Rudolf Hilfer at the Institute for Computational Physics (ICP) of the University Stuttgart has established a world record in the field of three-dimensional imaging of porous materials.

The scientists have generated the largest and most precise three-dimensional image of the pore structure of sandstone. The image was generated within a project of the Simulation Technology Cluster of Excellence, and contains more than 35 trillion (a number with thirteen digits) voxels.

It allows now to study the relation between microstructure and physical properties of porous rocks with unprecedented accuracy. Sandstones and porous rocks are of paramount importance for applications such as enhanced oil recovery, carbon dioxide sequestration or groundwater management.

In three-dimensional imaging one discretizes spatial structures similar to digital photographs. Three-dimensional image elements are called voxels – analogous to pixels for two-dimensional digital photos. The three-dimensional ICP-images systematically resolve the microstructure of a cubic sample of Fontainebleau sandstone over three decades from submillimeter to submicron scales.

The microstructure of sandstones is important for the hydraulic properties of many oil reservoirs and thus for efficient production of hydrocarbons. The largest three-dimensional image, that the physicists around Prof. Hilfer have generated, contains 32768 cubed, or 35184372088832, voxels.

For comparison: Medical magnetic resonance images of the human contain roughly 720 million voxel. Even state of the art 3d-images in science and engineering contain only up to 20 billion voxels. Expressed in digital photos a medical image thus corresponds to only 72 photos. The largest ICP-image, however, with 35 trilion voxels amounts to a stack of 35 million such digital photographs.

"This world record is important for the physics of porous materials, because it allows for the first time to investigate extremely complex microstructures as a function of resolution", says Hilfer. The microstructure of a porous material determines its elastic, plastic, mechanical, electrical, magnetic, thermal, rheological and hydraulic properties. Inversely, physicists can infer information about the microstructure from measuring such physical properties.

Until now it was not possible to image a sample of several centimetres with a resolution of several hundred nanometres. "To achieve this size and accuracy would require several years of beam time at a particle accelerator such as the European Synchrotron Radiation Facility in Grenoble." explains Hilfer. His team has therefore chosen a different approach. Firstly, the scientists developed theories and methods that allow to compare and to calibrate microstructures. Then they invented algorithms and data structures that allow generating computer models of sufficient size and accuracy. These models were finally digitized and carefully calibrated against real rock samples.

For further information contact Prof. Rudolf Hilfer, Institute for Computational Physics, phone: +49 (0) 711 685-67607, e-mail: hilfer@icp.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>